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Executive Summary 

Overview 
Pedestrian exposure has been defined as the number of potential opportunities for a pedestrian to 
be involved in a crash or other harmful situation with a moving vehicle on or near the roadway 
environment (Greene-Roesel et al., 2007; Ryus et al., 2014). Pedestrian exposure is an important 
metric to transportation officials and city planners to ensure that policies and road improvements 
designed to enhance road safety accurately reflect the volume of pedestrians. However, 
pedestrian exposure is challenging to measure accurately and efficiently given obstacles such as 
high costs, limited sampling locations, individual variability, and limited generalizability. This 
project builds an estimate of pedestrian exposure based on individual walking activity captured 
using accelerometers and GPS devices. 
Past research has shown that pedestrian exposure can be estimated at various scales: (1) area-
based, (2) point/segment-based, and (3) trip-based. Based on an extensive program scan, the 
research team selected a point-based scale, with the point being the intersection level. Walking 
bouts, derived from the integration of accelerometry and GPS, were computed. Walking bouts 
are periods of time where GPS and accelerometer traces have identified segments of physical 
activity during which walking is estimated to have occurred. The total walking bouts within an 
intersection was computed within a 50 m buffer.  
Zero-inflated negative binomial and the negative binomial models were created to examine 
environmental correlations between the number of walking bouts near or through intersections. 
The models examined the impact of roadway slopes as well as the proximal micro- and macro-
environmental features. The ZINB predicts the likelihood of observing walking bouts at an 
intersection using a dataset of all intersections in Seattle, Washington. The NB model predicts 
the likelihood of higher frequency of walking bouts using a subset of intersections with at least 
10 walking bouts. 

Data 
The data used in this project included data from de-identified longitudinal GPS and 
accelerometer data that were collected from hundreds of adults as part of two research projects: 
the Travel Assessment and Community project and the Assessing Choices in Transportation in 
our Neighborhood project. These projects were funded by the National Institutes of Health (NIH) 
for a collaboration between the Seattle Children's Research Institute and the University of 
Washington. Data collection was conducted from 2008 to 2018 and occurred in three waves for 
each project.  
The ZINB and NB models used data from TRAC Waves 1 and 2 and ACTION Wave 1. The 
ZINB model used a dataset that included all intersections in Seattle (n = 14,073 intersections). 
The NB model used a subset of data that included intersections with at least 10 walking bouts in 
Seattle (n = 3,047 intersections). Because the data used for the NB model included only 
intersections with walking bouts, each intersection could be linked to people walking there. 
Accordingly, pedestrian characteristics were also considered in the NB model. ACTION Waves 
2 and 3 were used to test and validate the models. 
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Statistical Models 
Least Absolute Shrinkage and Selection Operator regression was used to select the most relevant 
environmental predictors and minimize multicollinearity. This process identified 26 predictor 
variables for consideration in the ZINB and NB model. These variables are discussed in detail in 
the main report. 
The ZINB model (all intersections) revealed that 18 of the 26 predictor variables were 
significantly associated with the likelihood of observing walking bouts at an intersection. For 
example, the following nine variables were associated with a higher likelihood of presence and 
frequency of observed walking: 

• longer bike lane lengths, 

• presence of crosswalk warning sign, 

• presence of bike and pedestrian signs, 

• presence of traffic signal, 

• higher bus ridership density, 

• higher population density, 

• park presence, 

• longer trail length, and 

• higher job density. 
Additionally, these three variables were significantly associated with a decreased likelihood of 
walking bouts: 

• higher maximum slope,  

• presence of one-way signs, and 

• presence of a park-and-ride facility. 
The NB model (10+ walking bouts) showed 22 out of 26 predictors significantly affected the 
likelihood of higher number of walking bouts at intersections where walking activity was 
observed. Demographic predictors considered such as pedestrian age and income were positively 
associated with increased walking bout frequency with older pedestrians and pedestrians with 
incomes in the $40,000 to $69,000 range displaying more walking. In general, most conclusions 
confirmed the ZINB model, however the NB model showed the presence of stop signs and 
longer trail lengths were negatively associated with the number of walking bouts at intersections. 
Model validation was also conducted in terms of stability and accuracy. 

Summary 
This study provides a framework for using environmental predictors to estimate pedestrian 
exposure that can be used by other municipalities. The use of electronic device data to measure 
pedestrian exposure was shown to be useful, providing information on relative frequency of 
pedestrian activity at a highly disaggregated level. Walking bouts can also be aggregated up to 
the person-, trip-, and intersection-level to estimate exposure patterns and used with crash data to 



 

3 

estimate risk of pedestrian-vehicle crashes or severe injuries accounting for variation in 
pedestrian exposure. 
In terms of modeling, this study used ZINB and NB to identify factors associated with walking 
activities at the intersection level. These models were used to examine walking bouts as a binary 
outcome (walking: yes, no) and as a count. However, several other analytical methods can be 
considered given the research questions of interest. More specifically, walking bouts can also be 
used on a more continuous timeline to address research questions related to walk duration, travel 
time, and even impact of seasonal changes. 
The ACTION and TRAC data contain information on pedestrian walk behavior across King 
County, Washington. Our model centered on Seattle, which is highly urbanized. However, this 
dataset can also provide insights on pedestrians from less urbanized areas outside Seattle but in 
King County.1 This may be of future interest for understanding the impact of equity-related 
factors (e.g., accessibility to transit, availability of sidewalks, and median household income) on 
pedestrian safety.  
Our results also identified environmental predictors that may be useful for pedestrian exposure 
analyses. These variables were identified as significant either during variable selection or 
modeling. Significant micro-environment (location-based) variables of interest include average 
roadway width, maximum speed limit, total sidewalk length (ft), and the presence of various 
pedestrian- and vehicle-related traffic control signs and devices (i.e., one-way signs, stop signs, 
crosswalk signs, and traffic signals). Significant macro-environment (population-based) variables 
of interest include total trail length (ft), public school enrollment count, bus ridership density, job 
density, and various land uses (manufacturing, service, transportation). Many of these variables 
are available at the local and state level. For example, one of the most significant variables from 
our study was maximum slope percentage, a variable that should be available in most 
transportation municipalities. 
There were some limitations to this study. Notably, our analyses were conducted at the 
intersection-level only and may not include pedestrian walking activities on or near midblock 
areas where pedestrian-vehicle interactions can occur. This limitation was partially addressed by 
attributing any walking bout that happened within 50 m of an intersection to that intersection. 
This study was a first step in using walking bouts that combined accelerometry and GPS as a 
measure of pedestrian exposure. A major contribution of this project is the framework that has 
been developed to collect, process, and analyze such data. 
In summary, the presented framework can be used by transportation agencies interested in 
quantifying pedestrian exposure. The framework can be adapted to different levels of analysis. 
While not fully exhaustive, the list of predictor variables provided in this report serve as a 
starting point for other localities to examine pedestrian behavior. Additional environmental 
factors that exist within a specific locality can easily be incorporated.   

 
1 Editor’s note: In the 2020 U.S. Census King County’s population was 2,269,675, and Seattle’s was 738,172, so 
only about a third of King County’s population lies within the city. 
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Introduction 
There was a slight increase (<1%) in pedestrian fatalities along with a 12 percent increase in 
pedestrian injuries in the United States from 2021 to 2022 (NCSA, 2024). In 2022 the number of 
pedestrian fatalities increased by 52 from 2021, with an estimated 7,522 pedestrians killed, and 
an estimated 67,336 pedestrians injured in motor-vehicle-related crashes. Pedestrian exposure is 
defined as the number of potential opportunities for a pedestrian to be in contact with a harmful 
situation and may be a contributing factor to this increase (Greene-Roese et al., 2007; Ryus et al., 
2014; Qu et al., 2022).  
Efforts such as the National Roadway Safety Strategy (U.S. DOT, 2022) and programs such as 
Vision Zero (City of Seattle, 2017) are designed to make travel safer for all road users. Many 
cities have adopted innovative policies to reduce vehicle congestion and build infrastructure that 
supports active transportation modes, such as walking and biking. These policies aim to improve 
the health, safety, and livability of residents and visitors. However, creation of safer travel 
requires a better understanding of both exposure data (e.g., an increase in pedestrian traffic, 
unsafe driving speeds, pedestrian path behavior) and pedestrian injury counts. This data enables 
traffic safety experts and policymakers to differentiate between emerging risks (e.g., an increase 
in the rates of pedestrian/vehicle conflicts) and changing patterns of exposure (e.g., growth in 
pedestrian traffic). This, in turn, can help to better tailor countermeasure approaches. 

Program Scan 
A program scan was conducted to (1) identify variables that could be considered for pedestrian 
exposure as measured and used across various localities, (2) assess modeling approaches, and (3) 
identify datasets that contain relevant predictor variables. 
The program scan consisted of programs and data sources from research, government, and 
professional associations. Peer-reviewed journal articles, publicly available software, smartphone 
and tablet applications, and devices were included in the scan. Existing data collection programs, 
apps, or devices that included relevant pedestrian location and exposure information were 
identified. Documents and projects that provided data sources and methods to measure 
pedestrian exposure were extensively reviewed for validity and availability. 
As part of their Vision Zero plans (Vision Zero Network, 2021), many U.S. cities have 
implemented approaches to measure pedestrian exposure. The project team leveraged its working 
relationships with transportation experts from several Vision Zero cities to gather information on 
methods used to capture pedestrian exposure. Many phone interviews were conducted with city 
planners and researchers involved in pedestrian studies across the United States. 
The team also reviewed several datasets available to the project team in Washington State. In 
addition to WSDOT crash data and Puget Sound geocoded roadway data, the team reviewed 
pedestrian data collected as part of two previous NIH-funded projects, TRAC and ACTION. The 
program scan revealed several measures used to capture pedestrian exposure described in the 
next section. As part of the review, the team also identified the advantages and disadvantages of 
each pedestrian exposure measure (see Appendix A for details).  
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Pedestrian exposure measures used in past studies 
Pedestrian exposure to potential pedestrian-vehicle conflicts can be examined at various scales 
and units. They primarily fall into three categories: area-based (Table A 1), point/segment-based 
(Table A 4), and trip-based (Table A 6). A synthesis of past studies in each of these categories is 
included in Appendix A, which provides the following information for each study. 

• Exposure type: The type and unit of measure used for exposure 

• Reference: The paper that used the noted exposure type 

• Outcome of interest: the pedestrian exposure measure used in this study as a dependent 
variable (e.g., pedestrian crash frequency and injury severity) 

• Study location: Location of pedestrian exposure measurement  

• Spatial unit: Spatial unit of analysis used in the study (e.g., transportation analysis zone , 
census tract, individual trips, etc.) 

• Area extent: Area of pedestrian exposure (e.g., neighborhood, an entire city, county, 
region, State, etc.) 

• Data sources: The data used for exposure analysis 

• Pedestrian exposure model type: Type of model used for exposure estimation for studies 
where observed data were used to estimate exposure in unobserved locations. (This does 
not include any other model types with a dependent variable being pedestrian crash 
frequency or injury severity.) 

• Significant variables: Indirect variables that are statistically significant (a = .5) with 
pedestrian exposure estimation 

The most useful metric of pedestrian exposure in transportation safety is pedestrian volume 
counts collected at point locations. However, given costs and sampling issues, proxy variables 
are often used.  

Area-based pedestrian exposure 
Area-based exposure measures are proxies for pedestrian volumes because they capture the 
densities of people and activities. Most area-based measures can be obtained from secondary 
data (e.g., U.S. Census Bureau) and are often available over time. Area-based pedestrian 
exposure measures can be categorized as:  

• Area density (e.g., population, employment, residents, etc.), or 

• Self-reported walking activity, including: 
o Walking distance,  
o Walking duration, and/or 
o Number of individual trips. 
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Area density 
Area density such as population, employment, and resident densities is often used to approximate 
area-based pedestrian exposure, especially in pedestrian and bicyclist safety analysis (estimating 
crash or injury severities). Densities can be estimated within certain buffer sizes (e.g., distances 
from crash locations) or in predefined spatial units such as a TAZ or census tract. The main 
density data (population, residential, school) came from publicly available government websites, 
such as the U.S. Census Bureau, regional or local departments of transportation, and the National 
Center for Education Statistics.  
Past aggregate demand models have found that population density is positively correlated with 
pedestrian volumes (Hankey & Lindsey, 2016; Jamali & Wang, 2017; Wang & Kockelman, 
2013). This means that as population density increases, pedestrian volume increases as well. This 
also means that as population density decreases, pedestrian volume decreases as well. However, 
density data does not account for the variability of individual pedestrian activities such as 
pedestrians’ walking distance and time (Mooney et al., 2016).  
A summary of the advantages and disadvantages of density data for pedestrian exposure is 
provided in Table A 1 and Table A 2. 

Self-reported walking activity 
Individual walking activities can be used as measures of pedestrian exposure in terms of walking 
distance and duration, and number of individual trips. The main data source for area-based 
individual information is survey data. As self-reporting survey data obtains detailed information 
on individual characteristics such as age and gender, exposure measures can also be studied by 
different demographics.  
In the United States, two national-level surveys that include pedestrian information are the 
American Community Survey and the National Household Travel Survey. Local and regional 
government agencies also conduct surveys either regularly or based on the needs of 
transportation-related projects. A summary of the advantages and disadvantages of self-reported 
walking activity data as a pedestrian exposure measure is provided in Table A 3. 

Point/Segment-based pedestrian exposure 
Government agencies and public organizations regularly collect pedestrian counts at points (e.g., 
intersection or midblock) or segments (e.g., a single face of a city block) using an agency-
approved, standardized protocol. Direct measures of pedestrian volume include counts of 
individual pedestrians passing through specific points or segments. These collected count data 
can be used to monitor changes in pedestrian behavior and volumes over time. They are often 
used to assess whether traffic and road improvements are needed to enhance pedestrian safety. A 
summary of past studies that use point/segment-based pedestrian exposure is provided in Table 
A 4.  
Typically, pedestrian and bicycle counts are directly measured by data collectors or automatic 
counting devices at studied locations. Because the counts are collected at a limited number of 
locations, they provide only a snapshot of pedestrian walking and is limited for use in area-wide 
pedestrian exposure estimations (e.g., network, entire cities). They are often highly accurate for a 
limited spatial scale. The count data in regression models are estimates of pedestrian volumes at 
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points within areas, which are then aggregated to create area-based measures. These pedestrian 
counts can be used as 

• a direct measure of exposure at a specific location, and 

• an indirect measure of exposure at the areawide level by estimation and modeling. 
Transportation-facility-specific exposure measures are most often used in studies that focus on 
high-crash locations or specific study locations for pedestrian safety projects. Indirect measures 
use point-based data to estimate pedestrian exposure in broader areas.  
Turner et al. (2017) summarized different model types and corresponding pedestrian exposure 
estimates into four methodologies: direct demand, regional travel demand, simulation-based 
traffic, and special-focused. 
Direct demand models have been used widely in many pedestrian safety studies. Schneider et al. 
(2012) summarized the studies conducted on pedestrian intersection volume models (direct-
demand models) and the methods and statistically significant predictive variables from each 
model. The most common predictive variables in the intersection-based pedestrian models were 
population density, employment density, and transit accessibility. As expected, the coefficients 
for each variable were different and greatly depended on the community that the model was 
targeted. As noted by Schneider et al., the characteristics in individual communities greatly 
influence the estimation of pedestrian volumes.  
Regional travel demand models are historically most popular for estimating non-motorized 
travel, which are based on traditional trip-based forecasting models. This modeling is done in 
four steps: trip generation, trip distribution, mode share, and traffic assignment.  
Simulation-based traffic models rely on higher computational power and are often used for large-
scale pedestrian networks. Hong et al. (2016) used data composed of pedestrian dynamics, area 
dynamics, and network topology measures. 
Table A 4 also highlights special focused models used to address issues related to specific 
corridors and for sub-area planning. Regional models within this domain include trip generation 
and flow models, while a more specific corridor focused model (discrete choice) has been 
proposed to analyze crossing behavior. Additionally, GIS-based models are used in this context 
to model alternative land use or transportation investment strategies. 

Trip-based pedestrian exposure 
Trip-based pedestrian exposure measures can be categorized as  

• space-time walking path estimation, 

• crossing behavior, or 

• physical activity/walking bouts. 
As shown in Table A 6, studies showed various combinations in terms of their units of exposure, 
spatial resolution, measurement type, area extent, and model types.  
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Space-time walking path estimation 
The space-time approach was developed by Lam et al. (2014). This approach overlays pedestrian 
activities with crash frequencies to estimate pedestrian exposure levels at the time of a crash. The 
pedestrian path is estimated based on the shortest path algorithm using origin and destination 
data. Pedestrian exposure is defined for each space-time walking path as the product of the 
walked distance and crash frequency. This approach is relatively new, and one major downside is 
that pedestrian exposure (as an outcome of the model) can potentially be set to zero for segments 
with no reported crashes (Jamali & Wang, 2017). 

Crossing behaviors 
Pedestrian exposure at crossing locations can be estimated with crossing behaviors. Crossing 
constitutes a different exposure weight than, for example, just walking on the sidewalk. Crossing 
involves intentionally walking in front of motorized vehicles whose engines are activated.  
Researchers have studied this specific condition of pedestrian exposure using discrete choice 
models (e.g., sequential logit, nested logit model) to estimate the probability of crossing being 
chosen along a pedestrian trip. Papadimitriou et al. (2012) and Lassarre et al. (2007) controlled, 
trip-related variables (e.g., walk trip distance, crossing distance) in their choice models.  

Physical activity/Walking bouts 
Walking bouts were introduced in Kang et al. (2013). They represent pedestrian walking activity 
with high levels of detail. The data is recorded for each trip, but information can be examined at 
the individual level. Trip data is typically measured using electronic devices such as 
accelerometers and GPS data loggers. Periods in which accelerometer and GPS readings are 
consistent with walking can be classified as “walking bouts,” such that the locations and times 
where walking bouts occur represent a highly spatiotemporally accurate recording of one 
pedestrian’s exposure. These data can be used in concert with individual characteristics and 
sampling assumptions to estimate exposures for other pedestrians. 
The challenges that exist with this data include the loss of GPS signals in urban areas, inside 
buildings, under high- or low-temperature conditions, and when device batteries are low. 
Because missing data in accelerometer and GPS data collections may not be randomly 
distributed in time and space, additional self-reporting travel diaries can be collected to identify 
possible walking behaviors when GPS data is missing.  

Pedestrian exposure data sources 
There are various data sources for pedestrian exposure; this includes counts of pedestrian 
volumes, surveys and travel diaries, and continuous data from GPS and accelerometers. This 
section reports on existing data sources that have been used with pedestrian volumes, surveys, 
and travel diaries to examine and model pedestrian location and exposure. Continuous data from 
GPS and accelerometers was used for this study and is discussed in the next section. 
Many urban cities in the United States have implemented pedestrian count programs and the data 
from these programs can be useful for models that account for pedestrian exposure. However, for 
counts to be used as reliable exposure measures, the sampling of count locations needs to be 
carefully determined and defined. Without a sampling scheme, counts will only be useful for or 
applicable to the location where they are carried out, but they would not be as useful for corridor- 
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or jurisdiction-level studies. For pedestrian counts to be generalizable, count data needs to be 
collected at various times (time of day, day of week, monthly, yearly, etc.) and locations, and for 
various environmental changes. 

Sources of pedestrian volumes 
Pedestrian counts directly measure non-motorized pedestrian travel exposure. There are national 
reports that have summarized the data collection methods used for counting pedestrians and 
bicyclists. These reports include 

• Alta/ITE’s National Bicycle and Pedestrian Documentation Project (Jones et al., 2009),  

• FHWA's Traffic Monitoring Guide (FHWA, 2016),  

• National Cooperative Highway Research Program 797 report, Guidebook on Pedestrian 
and Bicycle Volume Data Collection (Ryus et al., 2014), and  

• FHWA’s Exploring Pedestrian Counting Procedures report (Norback et al., 2016).  
Appendix G summarizes the pedestrian and cyclist counting procedures from these reports, 
highlighting the strengths and weaknesses of each method. They report that budget constraints 
and commercially available technology affect the quality and quantity of data collection. (Tool 
availability continues to grow and those presented here are not exhaustive as newer tools have 
been released since this review was conducted.)  
Some widely used data collection tools include automated count technologies and location-based 
counting methods. Automated count technologies are used for longer-term counts and require 
fewer person-hours. However, the accuracy of the collected data is dependent on the counter 
configuration, installation, calibration, reliability, and level of use. Some agencies have 
developed a standard error correction method and an equipment adjustment factor to account for 
such errors (FHWA, 2016). Newer technologies include cellphone-based app counters and route 
trackers (Louch et al., 2016). 
Location-based counting methods include screen line counts or intersection crossing counts. A 
screen line count is a method that counts the number of pedestrians each time they pass a specific 
point. For high-crash locations, an intersection crossing counting method is recommended to 
record information on cross streets and pedestrian/bicycle/car turning movements (Norback et 
al., 2016).  
The National Bicycle and Pedestrian Documentation Project is an effort to provide a national 
database of annual bicycle and pedestrian count information (Jones et al., 2009). The data can be 
used to examine associations between various factors and bicycle and pedestrian activity. The 
national count date for this project is mid-September to represent a peak period for walking and 
bicycling. It includes at least one weekday and one weekend day. Additional surveys and counts 
can be collected in January (winter), May (spring), and July (summer) to account for seasonal 
data (Vision Zero Miami, 2018). 
Although a minimum number of count locations is not determined for the NBPDP, counting at 
more than one location is recommended. Criteria for selecting count locations include urban, 
suburban, and rural locations where the volumes of bicyclists and pedestrians are expected to be 
high based on historical data (NBPDP, 2010). NBPDP provides an option to automatically count 
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volumes using EcoCounter2 technology. Participating agencies and organizations provide data to 
the NBPDP national database. For public viewing, an annual summary report of trends is then 
published with information regarding volumes by user group, volume comparison to different 
locations and trip purposes and trip origin and destination.  

Vision Zero measurement efforts 
As part of the Vision Zero initiative, mayors of U.S. cities committed to eliminating traffic 
fatalities and severe injuries. Vision Zero cities work in partnership with city departments that 
include law enforcement, transportation, and public health sectors (Vision Zero Network, 2021). 
The cities work collaboratively to develop efficient approaches to measure pedestrian exposure.  
The team gathered information from research, phone interviews with state and local government 
officials, professional associations, and used publicly available documentation on how to collect 
pedestrian exposure measures. Vision Zero cities were also identified as part of the program 
scan. In addition to Seattle, there were nine other Vision Zero Focus cities examined in more 
depth. 

1. Los Angeles, California 
2. San Francisco, California 
3. Washington, DC 
4. Chicago, Illinois 
5. Fort Lauderdale, Florida 
6. Boston, Massachusetts 
7. New York, New York  
8. Portland, Oregon 
9. Austin, Texas 

Table A 8 in the Appendix provides details on the 23 Vision Zero cities examined and their 
corresponding measures for pedestrian exposure. For example, in Seattle manual pedestrian and 
cyclist counts, in addition to automatic counters and GPS and accelerometer data, have been used 
as measures for pedestrian exposure. However, a pedestrian exposure model has not yet been 
developed. The model developed in this project in turn serves to address this need.  

Summary of literature review 
The program scan showed that there are several units of measurement for pedestrian exposure: 
(1) area, (2) point/segment, and (3) trip. There were several limitations identified with existing 
pedestrian data and models (see Appendix A). Area-based metrics (e.g., population density, 
residential density, job density) are widely used because they are often the most readily 
available. They have been used as proxies for pedestrian volumes because they capture the 
densities (or concentration) of people and activities. However, for these metrics to be useful, they 
should also be collected and examined over many time periods (e.g., hours, days, weekly, 

 
2 Eco-Counter Canada/USA, Montreal, Canada 
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monthly). Another limitation of these high-level estimates is that they do not provide the 
granularity that is needed for inter-urban-specific safety solutions. 
Self-reported walking activity is also widely used but highly subjective and limited to the 
participant’s ability to provide accurate and reliable information. The level of participation for 
self-reported information can also vary greatly, making it difficult to develop a robust model. 
Based on the program scan, the most consistent and reliable exposure measure appears to be 
pedestrian volumes at point locations. The major challenges with this type of exposure data are 
cost and limited sampling locations. The high costs of collecting pedestrian volume data have led 
researchers to use proxy variables that are associated with pedestrian volumes such as population 
density and traffic volumes. Limited sampling locations may be mitigated with newer cellphone-
based apps for counts and route trackers (Louch et al., 2016). App functionality evolves as 
technology improves.  
Based on the program scan, there are three key indicators of a good metric and model of 
pedestrian exposure:  
● accurately reflects the pedestrian density for the study location, 
● scales to different spatial resolutions (e.g., intersections, transportation analysis zones), and 
● generalizable to different spatial contexts (e.g., corridors, cities, counties). 

In practice, there are tradeoffs between accuracy, scalability, and generalizability. The more 
flexible a model, the more accurate it is likely to be in the spatial context in which it is generated 
but the less likely it is to generalize to all pedestrian situations. 
Given these key indicators, the research team used walking activities from two previous projects 
(TRAC and ACTION) to capture pedestrian exposure in Seattle. The walking activities are 
defined in terms of walking bouts, or physical activities recorded from personal accelerometers 
and include data on geospatial locations from personal GPS devices and self-reported travel 
diaries that provide supplemental information on trip date, duration, and purpose.  
Walking bouts provide the foundation for measuring pedestrian exposure and can be aggregated 
to the individual-, trip-, and intersection-level. Walking bouts are naturalistic observations of 
pedestrians’ walk patterns over various locations and times. For that reason, they can also be 
examined across different time scales: hourly, daily, weekly, and monthly. As described by 
Schneider et al. (2012), a GIS-based model requires land use measures such as population 
density, nearby employment, nearby commercial space, transportation system characteristics 
(e.g., bus ridership) and other social measures (e.g., number of car-free households nearby). 
Several micro- and macro-environmental factors are considered in the modeling approach. The 
details of the data processing approach and merging of databases for modeling is described in the 
next section.  
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Method 
The primary objectives of this project were to develop an operational definition of pedestrian 
exposure and create a representative pedestrian exposure measure that can be modeled 
analytically. For this study, walking bouts (described below) were used to capture pedestrian 
volumes at intersections (the point location) in Seattle. 
The first step in developing the pedestrian exposure model was to combine all data into a format 
that is defined at the intersection level. The project team used TIGER/Line spatial databases 
(data.census.gov) to identify over 14,000 intersections in King County. 
A framework was developed to combine all environmental variables and walking bouts at the 
intersection level (see Figure 1). As part of the framework, walking behavior was first separated 
from non-walking behavior (Kang et al., 2013). The walking activities were then mapped to 
intersections of interest. Any GPS errors were reviewed and cleaned or removed. GPS error 
cleaning was the highest source of data elimination (15.4%). From there, buffers were placed 
around each intersection with walking bout counts and micro-environmental factors identified 
within 50 m buffers and macro-environmental variables identified within 400 m buffers. There 
was one spatial variable, slope, and it was recorded at the 400 m buffer level. The final dataset 
included each intersection as a row of observation and each predictor variable (micro, macro, 
spatial) and walking bout count as a column. 
The data sources used for this study can be described in four categories. 
● Pedestrian data: Project TRAC and Project ACTION were used to operationalize pedestrian 

exposure through physical activity. This data was collected in previously funded NIH 
studies. 

● Intersection: TIGER/Line spatial databases are collected by the Census Bureau and provide 
shapefiles and geodatabases detailing topological information for spatial computations. 

● Micro-environment: Seattle Department of Transportation collects city-specific data about 
the road environment, for example speed limits and pedestrian facilities. 

● Macro-environment: Census block level data from the 5-year American Community Survey 
and the Public Use Microdata Sample were collected for density information (population, 
residential, land use, etc.). 

The remainder of the methods section describes the datasets, data processing, descriptive 
statistics, correlation analysis, and variable selection using LASSO. 
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Figure 1. Framework to process pedestrian, intersection, micro-environment, and macro-environment data sources 
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Walking bouts 
For this study, the basic building block on which estimates of pedestrian exposure were built was 
the “walking bout,” based on a physical activity during which walking is estimated to have 
occurred. Physical activity data were collected from study participants who wore electronic 
accelerometer and GPS devices. Recorded physical activity was supplemented with information 
from participant travel diaries. We developed an algorithm to estimate walking bouts based on 
these inputs. This algorithm is described below and in greater detail in Kang et al. (2013).  
The data used in this project includes de-identified longitudinal GPS and accelerometer data 
from the TRAC and ACTION projects. Both were funded by the NIH in collaboration between 
the Seattle Children's Research Institute and the University of Washington. 
The TRAC data included three waves of data collected to coincide with the opening of light rail 
in King County (before light rail, 1 to 2 years after light rail opened, and then 3 to 4 years after 
light rail opened). The ACTION data also included three waves to coincide with opening of two 
new bus rapid transit lines in King County (before bus rapid transit, 1 to 2 years after bus rapid 
transit lines opened, and 3 to 4 years after bus rapid transit lines opened). Both sets of data 
include GIS data layers (roadway borders, shoulders, centerlines, sidewalks, etc.) and individual-
level GPS points, accelerometer data points (sampled every 30 seconds), and corroborating travel 
diaries about the trips (travel times, mode, and activity purpose). Walking data was extracted 
from the integration of personal monitoring devices (GPS and accelerometers) worn by study 
participants. To summarize, the total participants per wave, per study for which this data was 
collected is shown in Table 1. 

Table 1. Number of participants in TRAC and ACTION study 

Study Waves Duration Total participants 

TRAC 

1: Baseline 2008 and 2009 707 

2: 1- to 2 years after rail 2010 and 2011 581 

3: 3- to 4 years after rail 2012 and 2013 525 

ACTION 

1: Baseline 2013 and 2014 590 

2: 1- to 2 years after BRT* 2015 and 2016 398 

3: 3- to 4 years after BRT* 2017 and 2018 382 
*BRT = Bus Rapid Transit 

Sampling biases 
There were two major sources of biases. First, study participant behavior most likely did not 
represent walking behavior among all adults in the region. This was partially addressed by 
weighting the subjects demographically, to be more representative of the population in the area. 
While it was not possible to capture the entire population (e.g., some county residents are 
children and the participants were all adults), it does minimize some sampling biases. 
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There is also a bias given the spatial selection in the study – participants were invited based on 
their residential proximity and access to public transit services. The team attempted to minimize 
this bias using more advanced modeling strategies as well as considered other distance measures 
as a predictor in the exposure model (i.e., minimum, mean distance from home address).  

Procedure for collecting walking data using electronic devices  
For seven consecutive days, participants wore accelerometers and GPS units. Each participant 
was asked to record all trips in a standardized travel diary. The accelerometer recorded data 
every 30 seconds. Physical activity bouts were identified for time intervals in which 
accelerometer activity counts were higher than 500 counts per 30-second epoch (cpe) for at least 
7 minutes (5 minutes in duration with 2-minutes tolerance of lower physical activity intensity). 
The start and end location could be the same location, but an accelerometer indication of 
physical activity was not considered to be a walking bout if it occurred at the same location. For 
example, walking in place on a treadmill would not be considered a walking bout, but walking 
around a shopping mall would be a walking bout. Travel diaries noted walking purpose, which 
was classified as utilitarian, recreational, or both. 
The choice of device was intentional. The accelerometer was a GT1M3 for TRAC wave 1 and a 
GT3X for TRAC wave 2 and thereafter. A study conducted by Carr and Mahar (2012) compared 
several devices and showed that the GT3X was able to identify over 80% of sedentary behaviors 
and 60% of light-intensity walking time based on intensity output. The GPS unit was a DG-1004 
GPS data logger for TRAC Wave 1 and a BT1000XT5 for TRAC wave 2 and thereafter. 
A decision tree algorithm (Figure 2) classified the physical activity bouts into walking and non-
walking bouts. One hundred physical activity bouts were randomly sampled to test the algorithm. 
The algorithm’s accelerometer and speed conditions are slightly modified from Kang et al. 
(2013). The rules associated with the decisions are described in Section 2.1.3 Classification of 
walking or non-walking. The criteria reviewed for walking bouts included GPS-derived walking 
speed, valid GPS temporal coverage, and minimum spatial extent of walking bouts. 

 
3 Both manufactured by ActiGraph LLC, Pensacola, Florida.  
4 Manufactured by GlobalSat WorldCom Co., Taipei, Taiwan. 
5 Manufactured by Qstarz International Co., Taipei, Taiwan. 
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Figure 2. Summary of decision tree algorithm, modified from Kang et al. (2013) 

GPS-derived walking measures  
Walking bouts were defined as continuous walking with breaks that were less than or equal to 2 
minutes within a 7-minute rolling window. Walking bout speeds are defined as the median of 
available GPS speeds within that bout. The definition accounted for noncontinuous movement 
often associated with walking (e.g., walking in an urban area where one might stop at an 
intersection) and for distinguishing walking from running or very slow movement (Kang et al., 
2013). Median speed was selected rather than mean speed, which could be biased by a few GPS 
records from poor signals (Mooney et al., 2016).  

GPS and travel diary data  
Although GPS data is useful to capture location and speed, it has known limitations in terms of 
data completeness. Krenn et al. (2011) conducted a review that examined estimation of physical 
activity using GPS units with accelerometer or travel diaries, finding 17 of 24 studies had 
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missing or unusable GPS data, ranging from 2.5% to 92% of the observed time. Missing GPS 
data can result from signal loss (in dense urban areas and inside buildings), signal dropout, 
temperature drops or increases, and low unit power. When used in real-world conditions, most 
GPS units will experience some rate of missingness and uncertainty relative to participant 
location. Analyses that rely only on accelerometer and GPS may bias estimated outcomes, since 
GPS data loss is not randomly distributed in time and space. The team found that combining 
travel diary data with accelerometer and GPS data helped to identify walking behaviors and 
improved the estimation of walking bouts where GPS data was missing or inaccurate. A similar 
procedure was completed for missing accelerometer data, although this did not happen with as 
much frequency. If there were no accelerometer readings or GPS data, this traversal was 
removed. If the absence of an accelerometer reading could be supplemented by both a GPS 
reading and travel diary for the duration of the trip, the traversal was classified and kept for 
analysis as a walking bout. 

Dwell bouts or non-walking activities 
Non-walking activity is defined as physical activity bouts that occurred at a single location; these 
are labeled “dwell bouts.”  Dwell bouts were defined based on the following steps. 

1. A distance marker was added between each GPS point and all other points within the 
bouts. 

2. Points were then selected if they had a sum distance below the 95th percentile of the sum 
distances of all points in the bout. 

3. A minimum bounding circle was then created to fully contain the selected point. 
4. The circle’s radius was then obtained. 
5. Bouts with radii less than or equal to 66 ft were considered as dwell bouts. 

For step 5 the threshold distance of 66 ft (20 m) was selected given that Wu et al. (2010) showed 
that 95% of GPS points fall within this distance using a similar GPS model. Some non-dwell 
bouts with fewer GPS points had less than 66-ft radii. To prevent misclassification, bouts with 
radii less than or equal to 66 ft and more than or equal to 10 GPS points were defined as dwell 
bouts.  
The accelerometer data was the most complete and accurate when compared to the GPS data, 
and GPS data was more reliable and accurate than travel diary data. The walking bout algorithm 
was structured to prioritize data obtained from the more reliable and accurate instruments first 
among available data. For example, a bout that includes complete GPS data and a median speed 
of 0.25 km/h is less than the threshold for walking. (As indicated by the tree algorithm, walking 
speed is a median speed from 2.5 km/h to 6 km/h.)  Hence, this would be considered non-
walking even though the travel diary may have recorded that walking had occurred. 

Classification of walking or non-walking  
There were seven scenarios observed for which walking and non-walking could be identified. All 
scenarios were based on accelerometer data, but not all had complete accelerometer or GPS data. 
The duration of physical activity bouts was derived from the accelerometer. Depending on the 
completeness of the GPS data and the diary entries, the seven scenarios were defined as follows. 
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1. Walk1-GPS: GPS and accelerometer data. 
a. GPS-derived case with non-dwell points and satisfactory walking speed: bouts 

with complete GPS data, with non-dwell GPS points, and with median GPS 
speeds ranging from 2.5 km/h to 6 km/h.  

b. While walking speed was not calculated for each person, a very low threshold for 
both accelerometer activity counts and walking speeds was used to be as inclusive 
as possible of very slow walkers. 

2. Walk2-Diary: Accelerometer data overlapped with travel diary. 
a. Walking bouts with no or incomplete GPS data but that have any overlap in time 

with a walking trip recorded in the travel diary. 
3. Walk3-Diary: Accelerometer data overlapped with the diary-based, non-walking trip. 

a. Bouts with no GPS data have some time overlap with a non-walking trip in the 
travel diary. 

b. If walking is involved for otherwise non-walking trips (e.g., walking to and from 
transit stops), it is assumed that such walking trips are not recorded in the diary 
because they were not the primary travel mode. 

c. When the travel diary recorded non-walking trips (e.g., car, transit, and bike trips) 
and accelerometer data shows peaks, adjacent bouts were considered as 
unreported walking trips. 

4. Walk4-Diary: Overlap within 8-minute tolerance of diary-based trip. 
a. Bouts overlapping within an 8-minute time buffer around walking trips recorded 

in travel diaries. 
b. Recorded times on travel diaries and accelerometer did not match perfectly. This 

could be due to inaccurate time recall and rounding times on travel diaries. 
c. The 10-minute window of a diary-based trip is used to minimize the false-positive 

errors. 
5. NonWalk1 – ACC: Upper bound of accelerometer counts. 

a. Bouts of vigorous physical activity with a mean count of more than 2,800 cpe. 
b. Note: This was validated with three physical activity bouts that were self-reported 

to be indoor exercising, which showed mean counts from 2,874 to 3,360 cpe. 
6. NonWalk2 – GPS: GPS-derived dwell and speed. 

a. Bouts that fall within the definition of dwell bouts and have out-of-range GPS 
median speed for walking. 

7. NonWalk3-Diary: Occurring within a diary-based place. 
a. Bouts with no or incomplete GPS data but bout durations fell completely within a 

reported single place (e.g., home) and not within an 8-minute tolerance of a 
reported trip. 

These seven scenarios were consolidated into the decision-tree algorithm shown in Figure 2. The 
number of walking bouts per person provides insight into the frequency of walking, independent 
of the individual’s walking distance or walking time. Given that trip diaries are used in 



 

20 

conjunction with electronic devices, the walking bout algorithm captures the number and 
frequency of walking for activities such as commuting to school or work, visiting friends, 
shopping, or sightseeing. As noted earlier, walking bouts can be assessed at an individual level, 
as a function of a person, household, or location. For larger areas, data on walking bouts can 
provide insights on changing spatial and temporal patterns of pedestrian exposure. Walking 
bouts can also provide insights on characteristics that generate similar trip purposes or routes. 
Once the data was extracted into walking bouts (Figure 2), additional processing was applied to 
count the walking bouts by intersection. Figure 3 and Figure 6 show the process for Project 
ACTION and Project TRAC data, respectively.  
 

 
Figure 3. Project ACTION results from the Kang et al. (2013) walking bout processing 

framework 
The “cleaned” walking bout data (Figure 2) was mapped to the Seattle intersections. These 
intersections were sourced from Census TIGER/Line geographic system, which is government-
collected spatial data that includes geographic identification and topological information. These 
intersections were filtered to 3+ segments to focus the scope to intersections that have more 
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interaction with road users. These intersections were also buffered by 50 m to increase coverage 
and account for imperfections in the GPS data. For example, if GPS data was slightly inaccurate, 
or the intersection had large sidewalks or pedestrian gathering areas around them, this walking 
data may not be captured as occurring at the intersection that it did. These buffers also help 
assume a larger range or more generalized impact of the walking activity observed. These 
buffers assume that exposure experienced by a pedestrian is the same within this 50 m buffer 
range, for example on either side of the road, or opposite sides of the intersection.  
After filtering the walking bouts by these intersections, the walking bouts were “clipped” using 
the geospatial software, QGIS. The number of clips within each buffer represents the number of 
walking bouts that passed through this buffer, and therefore were ultimately counted and used as 
the outcome variable, walking bout count. Figure 4 and Figure 5 show how the walking bout 
counts were computed by 50 m intersection buffer.  

 
Figure 4. Demonstration of single buffer containing more than 1 intersection. All walking bouts 

counted for a single buffer are attributed to all intersections falling within a single buffer 
 



 

22 

 
Figure 5. Demonstration of walking bout “count” by intersection 50 m buffers  

Additional processing was computed to aggregate walking bouts by datetime, which was used to 
visualize differences in walking activity over the course of Project TRAC and Project ACTION. 
This data could also be used longitudinally for a more focused analysis of each projects’ 
participants. 
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Figure 6. Project TRAC results from the Kang et al. (2013) walking bout processing framework 

 
  

 C 
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Using walking bouts to estimate pedestrian exposure 
While walking bouts have been used to study health, they have not been used to estimate 
pedestrian exposure. In the processing described previously, physical activity data were 
developed into walking bouts, and walking bout counts were processed at the intersection level. 
The following steps were used to estimate pedestrian exposure using the walking bout counts:  

1. Compute spatial and temporal metrics for each validated Seattle pedestrian count location 
and at walking bout locations. Locations where the Seattle collected pedestrian counts 
can be found at: 
https://data.seattle.gov/browse/select_dataset?limitTo=datasets&sortBy=relevance&utf8=
%E2%9C%93&q=pedestrian  

2. Compute pedestrian counts at each intersection using walking bouts. The spatial metric of 
interest included area density of development, land use, and transportation infrastructure 
(bus stops, light rail, etc.). The temporal metric of interest included pedestrians per day, 
per time of day (morning and afternoon commute, lunchtime, etc.), per month, and per 
season. 

3. Create models to predict pedestrian exposure using Seattle pedestrian count data. The 
models were conducted given the spatial and temporal segmentations from Step 1. The 
explanatory variables were based on the list of variables identified from the program 
scan. Example measures included population density, employment density, and retail 
proportion.  

4. Validate the use of walking bouts. Models were developed to predict pedestrian exposure 
using walking bouts. The model outcomes (magnitude and direction of the parameter 
coefficients) were compared to data from the Seattle (Step 2). A goal was to examine the 
impact and value of each spatial metric. Cross-validation was done to ensure that the 
model was the most accurate for modeling pedestrian exposure.  

5. Use the predictive model with the number of walking bouts for various spatial metrics to 
estimate pedestrian counts at unmeasured locations. This included the additional walking 
bouts for locations where pedestrian counts were not available. The data were aggregated 
to the various spatial areas of interest (defined in Step 1). The team validated the ability 
of the model to provide consistent, reliable estimates using a subset of the dataset, as well 
as the ability to provide generalizable outcomes for other datasets. 

Descriptive statistics 
This section familiarizes the reader with the data used in pedestrian exposure modeling with 
summary statistics and visual data. The walking bouts were split into two datasets: Dataset 1 
included all intersections in Seattle (with 3+ segments), and Dataset 2 included only intersections 
where 10+ walking bouts were observed. To examine walking prevalence (where walking is 
known to have occurred), Dataset 2 also included demographic variables of the participants. All 
variables and corresponding data sources considered in this section and the forthcoming models 
are provided in Appendix B. 
  

https://data.seattle.gov/browse/select_dataset?limitTo=datasets&sortBy=relevance&utf8=%E2%9C%93&q=pedestrian
https://data.seattle.gov/browse/select_dataset?limitTo=datasets&sortBy=relevance&utf8=%E2%9C%93&q=pedestrian


 

25 

Post-processed walking bouts  
Figure 7 shows the walking bouts counts for TRAC (waves 1 and 2) and ACTION (wave 1) 
identified after the processing framework was applied. As a reminder, there were three waves 
each for Project TRAC and Project ACTION. TRAC wave 3 and ACTION wave 2 were used in 
the validation of the pedestrian exposure model. The figure shows that Project TRAC 
participants were mostly concentrated in the downtown area, with limited dispersion to the north 
and south regions of Seattle, while participants in Project ACTION have higher pedestrian 
dispersion. 
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(a) TRAC Wave 1 (b) TRAC Wave 2 (c) ACTION Wave 1 

Figure 7. Post-processing and counting of walking bouts within intersection buffers for (a) TRAC Waves 1, (b) 2, and (c) ACTION 
Wave 1 
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Environmental predictors  
Correlation analysis between explanatory variables was conducted to identify any potential 
multicollinearity issues. Figure 8 shows the distribution of explanatory variables for the 
following top 8 variables that showed the highest correlation. Please refer to the numerated list to 
identify variables in Figure 8. The correlations for all environmental variables considered can be 
found in Appendix D.  

• Residential density from the U.S. Census (RES_CENSUS_C_ACRE)   

• Population density from the U.S. Census (POP_CENSUS_C_ACRE) 

• Residential density from Urban Form Lab (UFL) Smart map (RES_UNIT_C_ACRE) 

• Job density from the U.S. Census (JOBS_C_ACRE)   

• Total crosswalk count (TOTAL_CROSSW_COUNT) 

• Residential land use (RES_LU_PER) 

• Total bike lane length (ft) (TOTAL_BIKEL_FT) 

• Traffic sign presence (TRAFF_SIGN_Y) 
These variables were explored in greater detail because they showed the highest correlations 
amongst each other. Additional visuals depicting the dispersion of the top eight predictors 
throughout Seattle are provided below and in Appendix C.  
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Figure 8. Correlation analysis and data distribution of highly correlated variables (α = .05) 

Figure 8 shows the distribution of the variables that are highly correlated. The proportion of 
residential land use (RES_LU_PER) at each intersection was further examined in Figure 9 (d). 
This variable represents the percent of residential land use at the intersection. Low percentage of 
residential land use in dense, urbanized areas (e.g., downtown) may indicate that there are many 
people residing in high rise buildings. This is confirmed given the concentration of people in the 
downtown area (see other variables [a to c] in Figure 9). The focus was to explore the 
relationship between total walking bouts and actual number of people who reside in the area. 
After extensive review, the population density from the Census appeared to be the most 
representative; we therefore excluded other similar variables (residential density from the 
Census, residential density from the Urban Form Lab Smartmap).  
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(a) Residential census density (b) Population census density 

  
(c) Residential density (d) Residential land use percentage 

Figure 9. Seattle density and land use by 50 m intersection buffers 
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Demographic predictors  

Age 
The mean age by location for the TRAC and ACTION data is shown in Figure 10. The ACTION 
data was obtained from residences near bus rapid transit stations. For that reason, we noticed that 
there were many older adults near transit stations given the proximity to several housing 
developments for older adults. 

(a) TRAC (b) ACTION 

Figure 10. Average age of pedestrians at intersections in the (a) TRAC and (b) ACTION data 
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Sex 
The number of female and male participants are shown in Figure 11. In general, the number of 
males and females was about the same in both the TRAC and ACTION data. The TRAC data are 
binned into quintiles, representing an even count dispersal within each sex, study combination. 
The ACTION data contains a smaller subset of pedestrians (only one wave), and thus was 
discretized even further into seven (ACTION, Female) and six (ACTION, Male) bins. 

Variable TRAC data ACTION data 

Females 

  

Males 

  

Figure 11. Sex (females, males) of pedestrians in TRAC and ACTION project by intersection. 
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Race 
In some intersections, the number of pedestrian participants that self-reported as white were 
several times larger than the count of those that self-reported as non-white (Figure 12), especially 
in areas like downtown Seattle. This could also be a possible source of bias in the developed 
model.  

Variable TRAC data ACTION data 

Count of white 
pedestrian 
participants 

 
 

Count of non-
white 
pedestrian 
participants 

  

Figure 12. Self-reported race (white, non-white) of pedestrians in the TRAC and ACTION 
projects by intersections 
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Employment 
In ACTION data, counts of unemployed participants in some intersections, like those in 
downtown Seattle and Northgate, are much larger than employed subjects. This is partly because 
of the definition of “employed” in the survey. “Employed” is defined as “working outside your 
home” so retired participants, students without any internships, and participants working from 
home are not considered “employed.” The term “employed” is used because walking bout data 
includes activities of the observed pedestrians walking for commuting and non-commuting. This 
way certain walking bouts can be weighted with purpose; if a person makes the same walk to the 
same destination twice a day and is employed, this may be attributed to commuting.  

Variable TRAC data ACTION data 

Employed 

  
Unemployed 

  

Figure 13. Employment status (employed, unemployed) of pedestrians in TRAC and ACTION 
project by intersections 
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After walking bouts, environmental variables, and demographic variables were processed at the 
intersection level, the two datasets for modeling were developed. 

Correlation analysis 

Dataset 1 
Dataset 1 (n = 14,073) included all intersections in Seattle. Figure 14 shows that several 
variables were highly correlated with each other. 
● “Crosswalk count” was highly correlated with “Traffic signal presence” (ρ = .7). “Crosswalk 

count” was removed but “Crosswalk warning sign presence” was retained to represent the 
relationship of crosswalk with walking bouts. 

● “Stop sign” was highly correlated with “Max speed limit” (ρ = .6), therefore it was removed 
from the model for Dataset 1. 

● “Service land use,” “Job density”, “Median household income”, and “White population” 
exhibited high correlations (ρ > .5). 

● “Culture land use” includes all publicly accessible social and entertainment areas such as 
public theaters, shopping malls, and parks. To avoid multicollinearity with other land use 
variables, this variable, “Culture land use’, was processed as “Park presence,” which is the 
variable used in the model. 
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Figure 14. Correlation plot for Dataset 1 (n = 14,073) 

  



 

36 

Dataset 2 
There were 8,547 intersections in Seattle with at least one walking bout. To account for 
individual pedestrian characteristics, Dataset 2 was further filtered to include only those 
intersections with at least 10 walking bouts in Seattle (n = 3,047). Figure 15 shows the 
correlation plot for Dataset 2. “Stop sign presence” no longer induced any multicollinearity (as it 
did for Dataset 1, therefore it was included in the model for Dataset 2. 

 
Figure 15. Dataset 2, intersections with 10+ walking bouts (n = 3,047) 

  



 

37 

Variable selection 
The team used LASSO regression, a penalized regression technique, to select the most relevant 
environmental predictors. For example, if the outcome yi is linearly associated with estimators xi1 
to xij, then the coefficient βj of an elastic net regularization method can be estimated by 
minimizing 

��𝑦𝑦𝑖𝑖 − 𝛽𝛽0 −�𝛽𝛽𝑗𝑗

𝑝𝑝
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𝑥𝑥𝑖𝑖𝑗𝑗�
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+ 𝜆𝜆1��𝛽𝛽𝑗𝑗�
𝑝𝑝

𝑗𝑗=1

+ 𝜆𝜆2�𝛽𝛽𝑗𝑗2
𝑝𝑝

𝑗𝑗=1

= 𝑅𝑅𝑅𝑅𝑅𝑅 + 𝐿𝐿𝐿𝐿𝑅𝑅𝑅𝑅𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑦𝑦 

where λ1 and λ2 are tuning parameters based on the data, and β0 is the intercept. By incorporating 
an elastic net regularization (the combination of LASSO penalty terms), the equation 
appropriately penalizes the situation where too many predictors are added to the model. This 
helps to prevent model overfitting while ensuring the successful selection of variables. A 10-fold 
cross-validation strategy was useful to assess model performance without overfitting to the data.  
In this study, y=number of walking bouts within a 50 m buffered intersection. The estimators, xi1 
to xij, represent explanatory variables. The list of variables considered are provided in Appendix 
E: LASSO for variable selection. 

Dataset 1 
A LASSO Poisson regression was built to estimate the number of walking bouts with the 31 
explanatory variables (23 numerical variables; 2 categorical variables that were represented with 
6 dummy variables (3 levels/factor) to represent maximum posted speed with the reference level 
of 20 mph (dummies: 25, 30, 35, 40 mph) and roadway segment count with a reference level of 4 
segments (dummies: 3, 5+ roadway segments).  

1. Average roadway width  
2. Max slope 
3. Total bike lane length 
4. Sidewalk length 
5. Presence of crosswalk warning sign 
6. Presence of bike and pedestrian sign 
7. Presence of stop sign (REMOVED) 
8. Presence of one-way sign 
9. Presence of traffic circle, Bump, No turn sign  
10. Presence of curve warning sign 
11. Traffic signal presence 
12. Bus ridership 
13. Job density 
14. Population density 

https://www.codecogs.com/eqnedit.php?latex=%5Cbeta_j
https://www.codecogs.com/eqnedit.php?latex=%5Clambda_1
https://www.codecogs.com/eqnedit.php?latex=%5Clambda_2
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15. White population 
16. Median household income 
17. Public school enrollment 
18. Park presence 
19. Total trail length 
20. Park-and-Ride presence 
21. Manufacture land use 
22. Transportation land use 
23. Service land use 
24. Max speed limit (20 mph) (REMOVED) 
25. Max speed limit (25 mph) 
26. Max speed limit (30 mph)  
27. Max speed limit (35 mph)  
28. Max speed limit (40 mph) 
29. Number of intersecting segment (4) (REMOVED) 
30. Number of intersecting segment (3) 
31. Number of intersecting segment (>=5)  

Figure 16 summarizes the path trajectory of the fitted sparse regression parameters. Each curve 
shows how the regression coefficient of a variable changes according to the value of lambda. The 
figure should be read from right to left - lambda from small to large. Variables with coefficient 
values (y-axis) that quickly become zero are considered weaker and are more likely to be 
insignificant in the model. The numbers in the figure refer to the variable list above. 
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Note: Each variable is numbered from the list found previously in this section. 

Figure 16. Variable convergence of LASSO for Dataset 1 
Using a 10-fold cross validation, the best model and the corresponding coefficients were 
identified. The selected best model was selected based on the best lambda value (0.018) with the 
smallest model deviance. The best model excluded stop sign presence (STOP_SIGN). This 
supported the reasoning to exclude stop sign presence as noted in the previous section.  
Figure 17 identifies the lowest point that corresponds to the best model with the 28 variables 
(excluding stop sign presence and two referenced variables from maximum posted speed and 
roadway segment count). 

Variable index 
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Figure 17. 10-fold cross validation of LASSO for Dataset 1 
Figure 16 provides insights on the specific variables that hold weight (significance) in the model 
while Figure 17 provides insight on the total number of variables that minimize deviation in the 
model. Figure 17 shows that the model could include 28 variables (out of 31) with stable 
behavior, while Figure 16 helps to identify those variables for inclusion. The top x-axis 
represents the independent variable index in both Figures. 

Dataset 2 
LASSO Poisson regression was built to estimate number of walking bouts with 40 explanatory 
variables (23 numerical variables; 2 categorical variables with 6 dummy variables to represent 
maximum posted speed with reference level of 20 mph (dummies: 25, 30, 35, 40 mph) and 
roadway segment count with the reference level of 4 segments (dummies: 3, 5+ roadway 
segments); and 6 individual-level variables with 3 dummy variables for median household 
income of pedestrians (<$40K, $71K-$99K, >$100K). Additionally, Dataset 2 considered the 
following demographic variables: 

• age, 

• sex, 

• race, and 

• employment status. 
As noted earlier, Dataset 2 includes demographic variables associated with pedestrians. Because 
this dataset only includes intersections with 10+ walking bouts, participant information can be 
aggregated to the intersection-level, which protects the privacy of the participant while allowing 
the model to consider demographic attributes. The demographic predictors were processed 
within a 50 m buffer. The full list included 40 variables. 

1. Pedestrian age 
2. Pedestrian female ratio 
3. Pedestrian participant non-white ratio 
4. Pedestrian employment ratio 

Variable index 
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5. Pedestrian single household (HH) ratio (REMOVED) 
6. Average roadway width 
7. Max slope 
8. Total bike lane length 
9. Sidewalk length  
10. Presence of crosswalk warning sign 
11. Presence of bike and pedestrian sign 
12. Presence of stop sign 
13. Presence of one-way sign 
14. Presence of traffic circle, Bump, No turn sign 
15. Presence of curve warning sign (REMOVED) 
16. Traffic signal presence 
17. Bus ridership 
18. Job density 
19. Population density  
20. White population 
21. Median household income 
22. Public school enrollment 
23. Park presence 
24. Total trail length 
25. Park and Ride presence 
26. Manufacture land use 
27. Transportation land use 
28. Service land use 
29. Pedestrian median HH income (40K – 69K)  
30. Pedestrian median HH income (<40K) 
31. Pedestrian median HH income (70K – 99K) 
32. Pedestrian median HH income (> 100K) (REMOVED) 
33. Max speed limit (20 mph) (REMOVED) 
34. Max speed limit (25 mph) 
35. Max speed limit (30 mph) 
36. Max speed limit (35 mph) 
37. Max speed limit (40 mph) 
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38. Number of intersecting segment (4) (REMOVED) 
39. Number of intersecting segment (3) 
40. Number of intersecting segment (>=5) 

Figure 18 summarizes the path trajectory of the fitted sparse regression parameters. Each curve 
shows how the regression coefficient of a variable changes according to the value of lambda. The 
figure should be read from right to left – lambda from small to large. Variables where their 
coefficient value (y-axis) quickly become zero are considered weaker and are more likely to be 
insignificant in the model. The numbers refer to the variable list above. 
 

 
Note: Each variable is numbered from the list found previously in this section. 

Figure 18. Variable convergence of LASSO for Dataset 2 
  

Variable index 
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Using a 10-fold cross validation, the best model and the corresponding coefficients were 
identified. The best model was selected based on the best lambda value (0.04) with the smallest 
model deviance. The best model excluded the presence of a crosswalk warning sign 
(CW_SIGN_Y). 
Figure 19 identifies the lowest point that corresponds to the best model with the 36 variables 
(excluding presence of crosswalk warning signs and three referenced variables from median 
household income of pedestrians, maximum posted speed, roadway segment count). 
 

 
Figure 19. 10-fold cross validation of LASSO for Dataset 2 

LASSO Poisson regression models provided insights on excluding the presence of stop sign for 
building models for Dataset 1 (all intersections) and excluding the presence of crosswalk 
warning signs for building models for Dataset 2 (intersections with 10+ walking bouts). 
Figure 18 provides insights on the specific variables that hold weight (significance) in the model 
while Figure 19 provides insight on the total number of variables that minimize deviation in the 
model. Figure 19 shows that the model could include 36 variables with stable behavior, while 
Figure 18 helps to identify those variables for inclusion. The top x-axis represents independent 
variable index in both Figures. 

Summary of variable selection 
Two LASSO regression models were used for variable selection, one for Dataset 1 and one for 
Dataset 2. Based on these models, the presence of a stop sign variable for Dataset 1 and 
crosswalk warning sign variable for Dataset 2 were excluded. A correlation analysis was also 
conducted to confirm the findings from the variable selection of the LASSO regression described 
previously. 

  

Variable index 
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Results 

Analytical models 
There were two statistical models computed to examine the likelihood of walking and likelihood 
of higher frequency of walking. A zero-inflated negative binomial model was used for Dataset 1 
(all intersections). A negative binomial model was used for Dataset 2 (intersections with 10+ 
walking bouts). 

Finalizing the zero-inflated negative binomial model 
ZINB regression was used to model count variables with excessive zeros. A zero-inflated model 
assumes that a zero outcome is due to two different processes (Minami et al., 2007). In the 
presence of walking bouts, the two processes include (1) an intersection with walking bouts 
compared to (2) an intersection without walking bouts. If the intersection is without walking 
bouts, the only outcome possible is zero. If the intersection has walking bouts, it is then a count 
process.  
For the forthcoming model, the two parts of the zero-inflated model are a binary logit model 
(likelihood of zero walking bouts) and a negative binomial count model, to predict the likelihood 
of increasing number of walking bouts. Interpretation of the ZINB model results require 
understanding the relationship between the two sub-model. Reviewing only one portion of the 
ZINB model is insufficient to capture the impact of a predictor, both portions (zero-inflated, 
negative binomial) should be interpreted jointly. It is also important to remember that the binary 
logit distribution (ZI) only provides insight on the variation in the presence of observed walking 
(walking bout count does not equal 0). The count distribution (NB) then assesses variation in the 
frequency of observed walking (given walking bout count does not equal 0). The correlation 
analysis (and a variance inflation factor check) showed that four variables (Median household 
income, Job density, Service land use, and White population) were highly correlated.  
To minimize multicollinearity, four separate ZINBs were created and compared. The dependent 
variable for all four models was walking bout counts. The model with “Job density” had the best 
model fit with the lowest AIC (Akaike information criterion – a measure of model fit with 
smaller values indicating better model performance) value (see Appendix F for detailed results). 
Using the model with job density as a predictor, estimates of the incident risk ratio (IRR) for the 
NB portion and odds ratio (OR) for the logistic (zero inflation) portion were obtained. 

Dataset 1, all intersections 
As shown in Figure 20a (the negative binomial part), the baseline number (model intercept) of 
walking bouts observed within a 50 m intersection buffer is 2.52 (see Appendix F, Table F 1 – 
Predictor Job Density) among the intersections which have walking bouts. A unit increase in 
bike lane length increases the baseline number of walking bouts by 1.07. When compared to a 
maximum posted speed of 20 mph, a maximum posted speed of 25 mph increased the number of 
walking bouts by 1.61 folds, whereas a maximum posted speed of 30 mph decreased the number 
of walking bouts by 0.69 times. 
The zero inflated portion (Figure 20b) shows the likelihood that the predictor variable impacts 
the likelihood of having zero walking bouts at an intersection (dependent variable). The baseline 
odds of the intersection having no walking bouts is 8.27 (see Appendix F). The baseline odds of 
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the intersection having no walking bouts decreased by 0.71 with the presence of a crosswalk 
warning sign. Intersections with maximum posted speeds of 25 mph and 35 mph were less likely 
to have no walking bouts (i.e., the intersections were more likely to have walking bouts) than 
intersections with a maximum posted speed of 20 mph (by 0.04 and 0.34 respectively). This 
aligns with the negative binomial portion (Figure 20a) which showed that 25 mph maximum 
posted speeds were associated with an increase in the number of walking bouts. When a park-
and-ride facility is present at an intersection, the odds of the intersection having no walking bout 
increased by 3.7. 
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(a) Negative binomial portion of ZINB (b) Zero-inflated portion of ZINB 

Figure 20. ZINB Model result for all intersections (Dataset 1) 
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Dataset 2, intersections with 10+ walking bouts 
A negative binomial model was created using Dataset 2 (Figure 21). The mean (baseline) 
number of walking bouts (dependent variable) within the 50 m buffer around an intersection is 
13.18 (intercept). Presence of stop signs and one-way signs decreased the baseline number of 
walking bouts by 0.87 and 0.78 times, respectively. 

 
Figure 21. NB model result for intersections with 10+ walking bouts (Dataset 2) 
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Model validation 
Validation entailed examining model stability and model accuracy. 

Model stability 
For model stability, ACTION Waves 2 and 3 were used. The data used in model development 
(TRAC Waves 1 and 2, and ACTION Wave 1) was considered the training set while the data 
used for validation (ACTION Waves 2 and 3) was considered the testing set. In general, the 
models performed well during the testing phase in predicting the number of walking bouts at an 
intersection. 
ZINB using Dataset 1 (all intersections). In the training dataset, 26 variables were selected using 
LASSO regression. Of these, 18 were statistically significant predictors. In the testing dataset, 29 
variables were selected for ZINB model inclusion, with 17 variables showing statistical 
significance. Thirteen of the 18 significant variables in the training set were also significant in 
the testing set. Four additional variables were selected by the testing model: percentage of non-
white pedestrian participants, service land use percentage, median household income, and 
roadway segment count. 
NB using Dataset 2 (intersections with 10+ walking bouts). In the training dataset, 26 variables 
were selected using LASSO regression. Of these, 22 predictors were statistically significant. In 
the testing dataset, 21 variables were selected for NB model inclusion, with 15 showing 
statistical significance. Fifteen of the 22 significant variables in the training set were also 
significant in the testing set. That is, every significant variable in the testing set was also 
significant in the training set. There were 3 variables that were not selected by the testing model 
but were selected by the training model: percentage female, job percentage, and presence of a 
curve sign. 
Examples of similarities (Table 2) and differences (Table 3) between the training dataset and the 
testing dataset are shown below. 

Table 2. Similarities in training and testing datasets 

Predictor Notes 

 Zero-inflated part Negative binomial part 

Population density Higher population density → 
Lower probability of zero 
walking bout counts 

Higher population density → 
Higher number of walking 
bout counts 

Traffic signals With signals → Lower 
probability of zero walking 
bout counts 

With signals → Higher 
number of walking bout counts 

Max roadway slope Steeper slope → Higher 
probability of zero walking 
bout counts 

Steeper slope → Lower 
number of walking bout counts 
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Table 3. Differences in training and testing datasets 

Predictor Notes 

Bus ridership per acre Significant in testing model only. This can be due to the 
following: 

• The training data (mostly TRAC) was from a light 
rail study 

• The testing data (ACTION) was from a rapid bus 
study 

Average roadway width Significant in testing model only, but coefficients are 
comparable 

Maximum speed limit – 35 mph Only significant in the training model 
 

Additional model stability – Expected model variation 
Data visualization showed that TRAC and ACTION data differed geographically. However, this 
variation offered a unique opportunity to examine model generalizability, which has been 
showcased in the validation effort. To better understand if the testing model can be used to 
validate the training model’s variable selection, a subset of TRAC only data (a benchmark 
dataset) was selected to further estimate the expected model variation. 
For the ZINB model, 26 variables from the training dataset were selected by LASSO for ZINB 
(Dataset 1) model inclusion. Of these variables, 18 showed statistical significance. In the 
benchmark dataset (TRAC only), 25 variables were selected for ZINB model inclusion, with 17 
showing statistical significance. The benchmark model showed significant similarities to the 
testing set. This suggests that the pedestrian exposure model (using the TRAC data) is sensitive 
to the micro-environment and does reflect the high prevalence of walking bouts around 
downtown. There was one variable, total sidewalk length, that the benchmark model did not 
show as significant. However, this variable was significant (p = 0.047) in the training model, 
showcasing the natural variation that can appear due to variations in data collection. 
For the NB model, 26 variables from the training dataset were selected by LASSO, with 22 of 
them showing statistical significance. In the benchmark dataset (TRAC only), 27 variables were 
selected by LASSO, 23 of these were statistically significant. The significant predictors in the 
NB model were identical between the training and benchmark datasets, with one exception: 
roadway segment count. This variable was significant in the benchmark model but was not 
selected for inclusion in the training NB model. 

Model accuracy 
The testing data was used in the trained pedestrian exposure model to assess the model’s 
predictive performance. Mean squared error and mean absolute error were examined for the 
negative binomial model (Dataset 2). These metrics were not computed for the ZINB model 
(Dataset 1) because of the high prevalence of zeros. The MSE and MAE from the NB training 
model were compared with those from the NB testing model. The training dataset had 108,658 
walking bouts while the testing dataset had 52,360 walking bouts.  
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MSE is a measure of the average squared difference between the estimated and actual values of 
the response variable. It is calculated by taking the sum of the squared differences between the 
predicted and actual values, divided by the number of observations. The lower the MSE, the 
better the model performance, as it indicates a smaller average difference between the predicted 
and actual values. The training dataset MSE is 2532.32, which means that on average, the 
squared difference between the predicted and actual values of the response variable is around 
2532.32. The adjusted testing dataset MSE is 2295.29, which suggests that the model 
performance is slightly better on the testing dataset than on the training dataset. 
MAE is another measure of the error between paired observations, and it is calculated by taking 
the absolute difference between the predicted and actual values, and then averaging across all 
observations. The lower the MAE, the better the model performance, as it indicates a smaller 
average difference between the predicted and actual values. The training dataset MAE is 32.32, 
which means that on average, the absolute difference between the predicted and actual values of 
the response variable is around 32.32. The adjusted testing dataset MAE is 28.95, which suggests 
that the model performance is slightly better on the testing dataset than on the training dataset, 
and the model can generalize well to new data. Overall, these metrics suggest that the negative 
binomial model was a reasonable fit to the data and can predict the count of walking bouts at an 
intersection. 

Discussion 
A ZINB model was developed to examine the likelihood of walking bouts at the intersection 
level. An NB model was also created that included intersections where 10+ walking bouts were 
recorded.  
The number of walking bouts was associated with several variables. The ZINB showed that 
several variables increased the number of walking bouts, including bike lane length, presence of 
crosswalk warning sign, presence of bike and pedestrian sign, presence of traffic signal, bus 
ridership density, population density, park presence, trail length, and job density. Variables that 
were associated with a decrease in walking bouts included maximum roadway slope, one-way 
sign, and presence of park-and-ride facility. The model results align with expectations on the 
impact of variables on the number of walking bouts. For example, it is reasonable to see why 
pedestrians may opt for a different or longer route to avoid roads with steep inclines (high 
maximum slope percentage). This inverse relationship has been supported in past studies (Kang, 
2017; Meeder, 2017). 
The NB model highlighted the association of variables on pedestrian exposure at intersections 
with walking bouts, key components among them being presence of stop sign and trail length. 
(As a reminder, stop sign presence was not included in Dataset 1 (all intersections) because it 
was not chosen during variable selection.) Stop sign presence and trail length were negatively 
associated with more than 10 walking bouts. This can be translated into the finding that a large 
number (10+) of walking bouts is less likely to occur at an intersection with stop signs. From a 
practical perspective, these findings indicate that the stop signs are placed at intersections that 
require more road user interaction (e.g., residential areas are highly controlled). As trails are 
more likely located outside of crowded urban areas, they were a good indicator of presence of 
walking bouts but not for a larger number (10+) of walking bouts. 
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Exploratory machine learning approaches, pedestrian density estimation 
To explore the potential offered by using machine learning (ML) models rather than 
conventional statistical models, three additional model types were fit to predict walking bouts.  

1. Negative binomial model: used as a reference, representing the conventional statistical 
modeling, as discussed previously. 

2. Random forest model: used to represent the flexible and simple modeling approach, not 
affected by linearity assumptions. 

3. Gradient-boosted tree model: retains some of random forest’s flexibility with less risk 
of overfitting by training models on subsets of variables rather than all variables and 
combining results from these models in principled ways. 

4. Random forest model with latitude and longitude withheld: Initial results from the naive 
random forest model (model #2) indicated that, because the dataset included the latitude 
and longitude of each intersection and because spatial autocorrelation of walking bouts is 
high, the model was primarily picking up on spatial autocorrelation. The random forest 
model corrected for the risk of autocorrelation artifacts by withholding intersection 
coordinates from the random forest model. 

For each model, a 10-fold cross-validation was used to fit and tune each model on a training set 
consisting of 50% of the intersections. The resulting model was then applied to a test set of the 
remaining 50% of the intersections to estimate model fit and error. 
The primary concern in this exploration was to explore the tradeoff between minimizing random 
error at the cost of potentially introducing systematic error due to overfitting bias. The models 
were measured using conventional fit metrics: root mean squared error (RMSE), mean absolute 
error (MAE), and R2 (Table 4). Plotted maps of predicted walking bouts and spatial error patterns 
for each model were useful to look for patterns that might indicate systematic error (Figure 22 
and Figure 23). 
From this investigation, it was concluded that a naive use of machine learning is at some risk of 
overfitting bias. In particular, the finer scale of differences in predictions of the random forest 
model (Figure 22) is both consistent with random forest making better use of the available 
covariate set and consistent with random forest making use of spatial autocorrelation intrinsic in 
walking bouts (i.e., because one walking bout typically visits two or more adjacent intersections, 
intersections adjacent to one with a walking bout are more likely to have one or more walking 
bouts, on average). The gradient boosted model is flexible to counteract the “random forest” 
issue with overfitting through regularization, early stopping, and cross-validation techniques. 
However, the RMSE for GBM is higher and the R2 is lower than the random forest counterparts. 
To maintain the low error from random forest and avoid overfitting, a random forest without the 
latitude and longitude of the data was also investigated. The research team intended this would 
scale model generalizability, meaning these results would be applicable across space. 
Developing this model requires highly educated tuning and validation to ensure that the model is 
not overfitting to the training data. The ML approach is not recommended when considering 
demographic attributes as predictors – as results of this overfitted model can lead to harmful and 
inaccurate interpretations.  
In summary, this approach was promising but would require a deeper dive into ML details and 
potentially a dataset collected from another cohort to fully validate the approach. Because of its 
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greater interpretability and lower potential for systematic bias due to autocorrelation, the 
research team moved forward with the negative binomial model. 

Table 4. Model fit metrics for several modeling choices 

Model RMSE MAE R2 

Negative Binomial (Reference) 15.7 7.3 0.56 

Gradient Boosted Model 11.0 5.8 0.77 

Random Forest 8.5 3.9 0.87 

Random Forest (without: 
LAT/LONG) 

9.9 4.9 0.81 

*The gradient boosted model is a composite model that ultimately combines many less effective 
models to reduce MSE of the overall model. 
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(a) Negative Binomial (b) Gradient Boosted Trees 

  

(c) Random Forest (d) Random Forest (Lat/Lon withheld) 

Figure 22. Predicted number of walking bouts using Dataset 1 for (a) an initial negative 
binomial, (b) gradient boost model, (c) random forest, and (d) random forest without latitude 

and longitude. 
The number of walking bouts are color coded based on interquartile range 
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(a) Negative Binomial (b) Gradient Boosted Trees 

  

(c) Random Forest (d) Random Forest (Lat/Lon withheld) 

Figure 23. Log Prediction Error by modeling type using Dataset 1 for (a) an initial negative 
binomial, (b) gradient boost model, (c) random forest, and (d) random forest without latitude 

and longitude 
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Conclusions 
Pedestrian exposure was defined in this study as the period when a pedestrian is at risk of being 
struck and injured by a vehicle. The study developed a framework that defines pedestrian 
exposure at the intersection-level using macro- and micro-environmental factors to predict 
pedestrian exposure. Intersection-level findings can be used to assess the potential effect of 
intersection-level countermeasures such as pedestrian crosswalk designs, sidewalk length, and 
curb extensions. Additionally, measures with this specificity can be aggregated to larger scales to 
address area-based research questions. 
The study used a pedestrian trip-based measure, walking bouts, to help operationally define and 
model pedestrian exposure. GPS and accelerometer data were used to transform people’s 
walking bouts into intersection-level data. Traffic-related environmental attributes were also 
assessed at the intersection-level. Data were captured within buffer regions around each 
intersection, sized at 50 m and 400 m to define the micro- and macro-environment around each 
intersection. Buffering the intersections offered flexibility to associate walking bouts with 
attributes of the surrounding built environment to model pedestrian exposure.  
Separate analytic models were developed for two different datasets: the first comprised all 
intersections in Seattle regardless of whether a walking bout was observed, and the second 
analyzed intersections where walking bout counts greater than 10 were observed. The first 
dataset examined the likelihood of observing any amount of walking, while the second analyzed 
the environmental factors that impact the frequency of observed walking. 
The study identified existing sources of pedestrian data, developed an operational definition of 
pedestrian exposure, measured, and examined pedestrian exposure, and developed analytical 
models to assess exposure in King County. As highlighted in this report, the number of walking 
bouts was positively associated with bike lane length, presence of crosswalk warning sign, 
presence of bike and pedestrian signs, presence of traffic signal, bus ridership density, population 
density, park presence, trail length, and job density in a ZINB model. Variables that were 
negatively associated with the number of walking bouts included maximum roadway slope, 
presence of a one-way road sign, and presence of park-and-ride facility. These model results 
align with the research team’s hypotheses and previous literature. For example, areas around 
park-and-rides may be expected to have less walking activity because the function of the facility 
is to drive there, and then transition to another mode of (moving) transit. It was observed that 
presence of park-and-rides had a positive association with the presence of walking bouts, 
however a negative association with the frequency of walking bouts. This is expected, as walking 
should occur (people moving from vehicle to other transit mode), however people may not walk 
enough to hit the minimum walking bout threshold limits (continuous walking for ~7 minutes). 
This pedestrian exposure model is specific enough to capture these nuances: walking is present 
around park-and-rides, but most likely not at a high enough frequency to accumulate significant 
exposure.  
Future research should seek to validate the models in other cities, where conditions (topography, 
weather, development densities, policies, transit systems, roadway design, etc.) are different 
from those of Seattle/King County. For this framework to be successfully used in other cities, a 
sampling scheme will need to be identified and established before data collection begins. The 
micro- and macro-environmental predictors introduced in this project can serve to quantify 
pedestrian exposure in other cities or regions. It will be important to test the extent to which 
predictors remain significant and retain strength across cities and regions. Extending the analyses 
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to other localities will also help identify whether the data are broadly available or whether other 
proxy variables will need to be used for nationwide applications. 
The relationship between pedestrian exposure and safety is another important avenue for future 
research. Increases in pedestrian exposure are only desirable if they are not correlated with 
increases in the number of crashes or the number of injuries and fatalities. An improved 
understanding of whether the predictors of pedestrian exposure may be correlated or may interact 
with crash occurrence and outcomes is warranted. In particular, DOTs and State policy officials 
should work with researchers to ensure exposure does not lead to additional individual risk. 
Overall, the framework developed during this project can be generalized and adaptable to 
variables on different spatial scales, offering flexibility for carrying out additional exposure 
analyses and for including alternative environmental factors of interest. 
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Appendix A.  Literature review on pedestrian exposure 
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Table A 1. Example studies with area-based pedestrian exposure 
Exposure  

Type Reference Outcome Location Spatial unit Area Data source(s) Statistical model Significance at  
α= .05 

Density (e.g., 
population, 
employment, 
residents) 

Amoh-Gyimah et 
al. (2016) 

Pedestrian and bicycle 
crash counts 

Melbourne,  
AU 

Census tract City AU 2011 population and 
housing census data 

n/a n/a 

Cai et al. (2016) Pedestrian crash 
counts 

FL Transportation 
Analysis Zone 

State Florida DOT n/a n/a 

Quistberg et al. 
(2015) 

Pedestrian–motor 
vehicle collisions  

Seattle,  
WA 

Crash location City ● King County Dept of 
Assessment (KCAOS) 
Property Parcel 2007 and 
2010 
● US Bureau of Labor 
Statistics 2007 and 2010 

n/a n/a 

Moudon et al. 
(2011) 

Pedestrian injury King County,  
WA 

Crash location County ● King County Assessor’s 
Office 
● UW Urban Form Lab 
(Moudon & Sohn, 2005) 

n/a n/a 

Loukaitou-Sideris 
et al. (2007) 

Pedestrian-automobile 
collision density 

Los Angeles,  
CA 

Census tract City ● US Census 2000 
● Census Transportation 
Planning Package (CTPP) 
2000 

n/a n/a 

Walking 
distance 

Haddak (2016) Fatality rates France Individual trips Country France National Travel 
Survey 2007-2008 (6 
waves) 

n/a n/a 

Wang & 
Kockelman (2013) 

Pedestrian exposure 
modeling  

Austin,  
TX 

Individual trips City Austin Travel Survey 
(2005/2006); 218 zones in 
Austin, TX 

Weighted least 
squares regression 

● Population counts 
● Sidewalk lengths 
● Zone size 
● Lane-miles by road 
class 
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Exposure  
Type Reference Outcome Location Spatial unit Area Data source(s) Statistical model Significance at  

α= .05 

McAndrews et al. 
(2013) 

Pedestrian injury WI Individual trips State ● WI Add-On Sample to 
the 2001 NHTS 
● WI Dept of Health 
Services (for population 
data) 

n/a n/a 

Walking 
duration 

Hong et al. (2016) Pedestrian exposure 
modeling 

Seattle,  
WA 

Crosswalk City Microsimulations using 
VISSIM 

n/a n/a 

Haddak (2016) Fatality rates France Individual trips Nation France National Travel 
Survey 2007-2008 in 6 
waves 

n/a n/a 

McAndrews et al. 
(2013) 

Pedestrian injury WI Individual trips State ● WI Add-On Sample to 
the 2001 NHTS 
● WI Dept of Health 
Services (for population 
data) 

n/a n/a 

Chu (2003) Fatality risk of 
walking 

US Individual trips Country 2001 NHTS n/a n/a 

Number of trips Jamali & Wang 
(2017) 

Pedestrian exposure US Individual trips Country Household-level NHTS 
2009 data in rural and small 
urban areas 

Negative binomial 
regression 

● Household size (+) 
● Number of adults 
(+) 
● Number of workers 
(-) 
● Population density 
of the block group (+) 
● Car ownership (-) 
● Higher-income (+) 

Osama & Sayed 
(2017) 

Number of pedestrian 
crashes 

Vancouver, CA Transportation 
Analysis Zone 

City ● Census Canada 2011 
● TransLink Household 
travel survey 2011 

n/a n/a 
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Exposure  
Type Reference Outcome Location Spatial unit Area Data source(s) Statistical model Significance at  

α= .05 

Tian & Ewing 
(2017) 

Home-based walk trip 
generation model 

Portland, OR Individual trips City Oregon Household Travel 
and Activity Survey of 
2011 

Negative binomial 
regression  

● Land-use entropy 
within 0.5 mile  
● Sidewalk quality 
within 0.25 mile 
● Traffic calming 
prevalence within 0.5 
mile 
● Transit stop density 
within 0.5 mile 
● Household size 
● No. of children in 
the household 

Jerrett et al. (2016) Pedestrian injuries Southern CA Census tract Region 2001 Travel and 
Congestion Survey by the 
Southern California 
Association of Government 

n/a n/a 

Haddak (2016) Fatality rates France Individual trips Country France National Travel 
Survey 2007-2008 in 6 
waves 

n/a n/a 

McAndrews et al. 
(2013) 

Pedestrian injury WI Individual trips State ● WI Add-On Sample to 
the 2001 NHTS 
● WI Dept of Health 
Services (for population 
data) 

n/a n/a 
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Table A 2. Area density for pedestrian exposure – Advantages, disadvantages, and possible improvements 

Area density example Data sources Advantages Disadvantages Possible Improvements using 
GPS and accelerometer data 

● Population density 

● Residential density 

● Employment density 

 

● U.S. Census Bureau 
(publicly available)   

● Regional and local 
government 

 

● Readily available for 
several geographies and 
time periods (Greene-
Roesel et al., 2007) 

● Available to compare 
trends over time 

● Proxy for pedestrian volume 

● High-level approximation of exposure 

● Predefined by spatial units (e.g., Transportation Analysis Zone 
[TAZ]) where the population may not distribute evenly, which may 
lead to erroneous results 

● Does not account for the variability of individual pedestrian activities 
such as pedestrians’ walking distance and time (Mooney et al., 2016) 

● An actual number of pedestrians walking may not relate to the 
number of people that reside or work in the area (Greene-Roesel et 
al., 2007) 

● Individual walking measure rather 
than area-based data 

● More representable and accurate 
of walking activity than proxy 
measure 
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Table A 3. Self-reported walking activity for pedestrian exposure – Advantages, disadvantages, and possible improvements 

Self-reported walking activity Data sources Advantages Disadvantages Possible improvements using GPS 
and accelerometer data 

● Frequency of walking  

● Duration of walking 

● Distance of walking  

● National Household Travel 
Survey 

● American Community Survey 

● National Highway Traffic Safety 
Administration  

 

● More detailed than pedestrian 
counts or volumes 

● Can record the purpose of the 
walking bout, from the perspective 
of the participant 

 

● Subjective measure depending on 
a person’s memory 

● Under-reported activity 

● Frequency of walking could be 
underestimated, walking activities 
such as a short walk to a vehicle 
or bus stop may not be reported 

● Duration of walking could be 
overestimated as people perceive 
their walking time longer than the 
actual duration (Chu, 2003) 

 

● Objective measures (e.g., 
accelerometers and pedometers) 

● More accurate assessments of 
physical activity from which 
specific activities such as walking 
can be identified 
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Table A 4. Example studies with point/segment-based pedestrian exposure 

Exposure 
type Reference Outcome of 

interest Study location Spatial unit Area 
extent Data sources Pedestrian exposure 

model type 
Significance at 
(α= .05) if any 

Pedestrian 
volume 

 

Hankey & 
Lindsey 
(2016) 

Spatial 
estimates of 
pedestrian 
traffic 

Minneapolis, 
MN 

Intersections 

 

City ● Minneapolis Department of 
Public Works (DPW) 

● Transit for Livable 
Communities (TLC) 

Linear regression ● Retail area (+) 

● Open space area (+) 

● Population density (+) 

● Transit stop (+) 

Zegeer et al. 
(2001) 

Pedestrian 
crashes 

30 cities across 
the United 
States 

Crosswalks Region ● U.S. DOT – FHWA Adjustment factors by 
the time of day and 
area type 

n/a 

Raford & 
Ragland 
(2003) 

Pedestrian 
volume  

Oakland, CA Intersections 

and Road 
segments 

City ● CA Office of Traffic Safety 
through the Business, 
Transportation, and Housing 
Agency 

Network Analysis 
Model (called Space 
Syntax) 

n/a 

Qin & Ivan 
(2001) 

Weekly 
pedestrian 
volumes 

CT Crosswalks City ● U.S. DOT through the New 
England University 
Transportation Center and the 
Connecticut Transportation 
Institute 

Generalized linear 
regression 

● Campus area (+) 

● Tourist and downtown 
areas (+) 

Tobey et al. 
(1983) 

Pedestrian 
exposure 
measure 
related to 
crash events 

NY, MO, WA, 
FL, VA, 
Washington, 
DC 

Crosswalks Region ● U.S. DOT – FHWA n/a n/a 
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Table A 5. Pedestrian volume as pedestrian exposure – Advantages, disadvantages, and possible improvements 

Examples data sources Advantages Disadvantages Possible Improvements using 
GPS and accelerometer data 

● Data collectors in the field 

● Video recordings 

● Automated counting devices 

● More accurate than population density 
as individual pedestrians passing 
through designated points during an 
observed time interval are counted 

● Useful when studying characteristics in 
a specific location 

● Costly 

● Time and location-dependent which reflects pedestrian activity in 
discrete areas and time periods only 

● Could be misreporting and underreporting 

● For individual pedestrians that cannot be identified, the estimated 
number of pedestrians may not be accurate when pedestrians cross 
multiple times (Greene-Roesel et al., 2007) 

● Because the data are based on point locations, it may be difficult to 
assess pedestrian exposure over wide areas  

● Able to measure pedestrian 
counts at any intersection 
traversed 

● Can distinguish single vs. 
multiple crossings at same 
location  
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Table A 6. Examples of analysis on trip-based pedestrian exposure 

Exposure type Reference Outcome of 
interest 

Study 
location Spatial unit Area extent Data sources 

Pedestrian 
exposure model 

type 

Significance at 
(α= .05) if any 

Space-time 
walking path 
estimation 

Lam et al. 
(2013); Lam et 
al. (2014); Yao 
et al. (2015) 

Activity-based 
pedestrian 
exposure 

Kwun Tong 
(KT) 
District in 
Hong Kong 

Individual trips County ● Transport Department of 
Hong Kong 

● Space-time Path 
and prism 

● Potential path tree  

n/a 

Crossing 
behavior 

Papadimitriou 
et al. (2012) 

Pedestrian 
exposure related 
to crossing 
behavior 

Athens, 
Greece 

Road segments Neighbor-
hood 

● Field survey using simple 
random sampling at the exits 
of Metro stations in Athens, 
Greece 

● Sequential logit 
model 

● Traffic signals (+) 
● Low traffic volume (+) 
● Presence of two lanes (-

) 
● A change of trip 

direction (+) 
● crossing at the first road 

link (+) 
● increase in the 

percentage of the trip 
length (+) 

● increased walking 
speed (-) 

Lassarre et al. 
(2007) 

Pedestrian risk 
exposure for 
pedestrians 
(micro-
environment)  

Florence, 
Italy and 
Athens, 
Greece 

Crosswalks City • WHO-World Health 
Organization, 2006. Health 
effects and risks of transport 
systems: the HEARTS 
project. WHO Regional 
Office for Europe 

Nested logit model ● Walking distance (-) 
● Crossing distance (-) 
● Vehicle volume (-) 
● Crosswalk (+)  

Physical 
activity/ 
walking bouts 

Kang et al. 
(2013) 

Pedestrian 
walking activity 

Seattle/ 
King 
County, 
WA 

Individual trips City ● Travel Assessment and 
Community project between 
July 2008 and July 2009 
funded by National Institute 
of Health (NIH) and in 
collaboration with the Seattle 

n/a n/a 
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Exposure type Reference Outcome of 
interest 

Study 
location Spatial unit Area extent Data sources 

Pedestrian 
exposure model 

type 

Significance at 
(α= .05) if any 

Children's Research Institute 
(SCRI) and the University of 
Washington (UW)   

Frank et al. 
(2019) 

Physical activity, 
walkability 

Portland, 
OR 

Individual trips City ● National Institute of Diabetes 
and Digestive and Kidney 
Diseases, National Institutes 
of Health-funded 

● Surveys were used from 
2009 National Highway 
Transportation Survey 

n/a n/a 

Miller et al. 
(2015) 

Physical activity, 
walkability 

Salt Lake 
City, UT 

Individual trips City ● A custom web application 
and GIS-based Trip 
Identification and Analysis 
System (TIAS) (Westat, Inc.) 
supported the accelerometer 
and GPS data pre-processing. 

n/a n/a 

NYC Dept. of 
Health and 
Mental Hygiene 
(2013) 

Physical activity, 
walkability 

New York 
City 
borough 
(Bronx, 
Brooklyn, 
Manhattan, 
Queens, and 
Staten 
Island). 

Individual trips Region ● Physical Activity and Transit 
(PAT) survey conducted by 
the New York City 
Department of Health and 
Mental Hygiene  

n/a n/a 
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Table A 7. Examples of Previous Pedestrian Intersection Volume Models (Schneider et al., 2012) 
General information Pedestrian count information Significant predictor variables Model information 

Model 
Location 

Developed 
by 

Intersec-
tions Used 
for Model 

Pedestrian 
Count 

Description 

Type of 
Count 
Sites 

Count 
Period(s) 
Used for 
Model 

Weather 
During 
Counts 

Land Use Transport-
ation System 

Socio-
economic 

Character-
istic 

Other Model 
Output 

Model 
Type 

Validation 
Testing 

Charlotte, 
NC 

UNC 
Charlotte 
(Pulugurtha 
& Repaka, 
2008) 

176 Pedestrians 
counted each 
time they 
arrived at the 
intersection 
from any 
direction 

Signalized 
intersectio
ns 

7 am-7 pm Clear 
weather 
conditions 

● Population 
within 0.25 mi. 
● Jobs within 
0.25 mi. 
● Mixed land 
use within 0.25 
mi. 
● The urban 
residential area 
within 0.25 mi. 

Number of 
bus stops 
within 0.25 
mi. 

n/a n/a Total 
pedestrians 
approaching 
intersections 
from 7 am to 
7 pm 
(shorter 
periods also 
modeled) 

Linear None reported 

Alameda 
County, 
CA 

UC Berkeley 
SafeTREC 
(Schneider et 
al., 2009) 

50 Pedestrians 
counted every 
time they 
crossed a leg 
of the 
intersection 
(pedestrians 
within 50 feet 
of the 
crosswalk 
were counted) 

Signalized 
and un-
signalized 
intersectio
ns 

Tu, W, or 
Th: 12-2 
pm or 3-5 
pm, 
Sa: 9-
11am, 12-2 
pm, or 3-5 
pm 

All-weather 
conditions; 
weather 
adjustment 
factors were 
calculated 
from 
automated 
counters 

● The 
population within 
0.5 mi. 
● Employment 
within 0.25 mi. 
● Commercial 
properties within 
0.25 mi. 
 

BART 
(regional 
transit) station 
within 0.1 mi. 

n/a n/a Total 
pedestrian 
crossings at 
intersections 
during a 
typical week 

Linear 46 historic 
counts used 
for validation 
(30 additional 
intersections 
were counted 
for validation 
in 2009) 

San 
Francisco, 
CA 

San 
Francisco 
State (Liu & 
Griswold, 
2009) 

63 Pedestrians 
counted each 
time they 
crossed a leg 
of the 
intersection 
(no distance 
to crosswalk 
specified) 

Signalized 
and 
unsignalize
d 
intersectio
ns 

Weekdays 
2:30-6:30 
pm 

Not reported ● Population 
density (net) 
within 0.5 mi. 
● Employment 
density (net) 
within 0.25 mi. 
● Patch richness 
density within 
0.063 mi. 
● Residential 
land use within 
0.063 mi. 

MUNI (light-
rail transit) 
stop density 
within 0.38 
mi. 
● Presence 
of bike lane at 
intersection 

n/a Mean slope 
within 
0.063 mi. 

Total 
pedestrian 
crossings at 
intersections 
from 2:30-
6:30 pm on 
typical 
weekday 

Linear None reported 
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General information Pedestrian count information Significant predictor variables Model information 
Model 

Location 
Developed 

by 
Intersec-

tions Used 
for Model 

Pedestrian 
Count 

Description 

Type of 
Count 
Sites 

Count 
Period(s) 
Used for 
Model 

Weather 
During 
Counts 

Land Use Transport-
ation System 

Socio-
economic 

Character-
istic 

Other Model 
Output 

Model 
Type 

Validation 
Testing 

Santa 
Monica, 
CA 

Fehr & Peers 
(Haynes et 
al., 2010) 

92 Pedestrians 
counted each 
time they 
crossed a leg 
of the 
intersection 
(no distance 
to crosswalk 
specified) 

Signalized 
and un-
signalized 
intersectio
ns 

Weekdays 
5-6 pm 

Not reported ● Employment 
density within 
0.33 mi. 
● Within a 
commercially- 
zoned area 

● Afternoon 
bus frequency 
● Average 
speed limit on 
the 
intersection 
approaches 

n/a Distance 
from Ocean 

Total 
pedestrian 
crossings at 
intersections 
from 5-6 pm 
on typical 
weekday 

Linear About 107 
additional 
intersections 
were counted 
for validation 

San 
Diego, CA 

Alta 
Planning + 
Design 
(Jones et al., 
2010) 

80 Pedestrians 
counted each 
time they 
arrived at the 
intersection 
from any 
direction 

Signalized 
and 
unsignalize
d 
intersectio
ns 

Weekdays 
7-9 am 

Nice weather ● Population 
density within 
0.25 mi. 
● Employment 
density within 0.5 
mi. 
● Presence of 
retail within 0.5 
mi. 

● Greater 
than 6,000 
transit 
ridership at 
bus stops 
within 0.25 
mi. 
● 4 or more 
Class I bike 
paths within 
0.25 mi. 

● More 
than 100 
households 
without 
vehicles 
within 
● 0.5 mi. 

n/a Total 
pedestrians 
approaching 
intersections 
from 7 am to 
9 am 

Log-
linear 

None reported 

Montreal, 
Quebec 

McGill 
University 
(Miranda- 
Moreno & 
Fernandes, 
2011) 

1018 Pedestrians 
counted each 
time they 
crossed a leg 
of the 
intersection 
(no distance 
to crosswalk 
specified) 

Signalized 
intersectio
ns 

Weekdays 
6-9 am, 11 
am-1 pm, 
and 3:30-
6:30 PM 

Most counts 
during nice 
weather; 
weather 
variables 
were 
analyzed 

● Population 
within 400 m 
● Commercial 
space within 50 
m 
● Open space 
within 150 m 
● Schools within 
400 m 

● Subway 
within 150 m 
● Bus station 
within 150 m 
● % Major 
arterials 
within 400 m 
● Street 
segments 
within 400 m 
● 4-way 
intersection 

n/a ● Distance 
to 
downtown 
● Daily 
high 
temperature 
>32C 

Total 
pedestrian 
crossings at 
intersections 
over 8 count 
hours 
(shorter 
periods also 
modeled) 

Log-
linear 
(also used 
Negative 
binomial) 

Counts at 
20% of the 
intersections 
were 
compared to a 
model based 
on 80% of the 
intersections 
for validation 
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Table A 8. Summary of examples of pedestrian exposure measure data collection methods in U.S. cities 

City State Pedestrian manual 
count Bike manual count 

Automatic counter 
(e.g., loop, 
counters) 

Video technology Survey Pedestrian exposure 
model 

Electronic devices (e.g., 
GPS, Accelerometer, 
Mobile application) 

Seattle WA ✔ ✔ ✔    ✔ 

Bellevue WA   ✔ ✔    

PSRC WA     ✔   

Portland OR ✔ ✔ ✔    ✔ 

Caltrans CA ✔ ✔   ✔ ✔  

San Francisco CA ✔       

Santa Monica CA    ✔ ✔ ✔  

San Diego CA ✔ ✔ ✔   ✔  

Oakland CA ✔     ✔  

San Francisco CA ✔       

Arizona AZ   ✔     

Tucson AZ ✔ ✔      

Salt Lake City UT       ✔ 

Colorado CO   ✔     

Austin TX ✔  ✔ ✔    

Minneapolis MN ✔ ✔ ✔     

Chicago IL ✔       

FDOT FL       ✔ 

Jacksonville FL   ✔     
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City State Pedestrian manual 
count Bike manual count 

Automatic counter 
(e.g., loop, 
counters) 

Video technology Survey Pedestrian exposure 
model 

Electronic devices (e.g., 
GPS, Accelerometer, 
Mobile application) 

Orlando  FL ✔ ✔ ✔     

Miami FL ✔ ✔      

New York City NY ✔ ✔ ✔  ✔  ✔ 

Boston MA ✔ ✔  ✔    

Seattle WA ✔ ✔ ✔    ✔ 

Bellevue WA   ✔ ✔    

PSRC WA     ✔   
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Appendix B.  All variables considered and data sources 
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Table B 1. All variables considered in analysis and data sources 

Variable names Abbreviation  Units Type Buffer 
size 

Date Removed Data Sources 

Total walking bouts - 
Outcome 

TOTAL_WB   Count  Numeric 50 m 2008
-
2014 

 Seattle Children’s Hospital 
and University of 
Washington 
(TRAC/ACTION) 

Individual-level variables 

Pedestrian average age (DS2 
only) 

I_AVG_AGE Age Numeric 50 m 2008
-
2014 

 Seattle Children’s Hospital 
and University of 
Washington 

Pedestrian female ratio (DS2 
only) 

I_RATIO_GENDER_F  Ratio Numeric 50 m 2008
-
2014 

 Seattle Children’s Hospital 
and University of 
Washington 

Pedestrian non-white race 
ratio (DS2 only) 

I_RATIO_RACE_NW    Ratio Numeric 50 m 2008
-
2014 

 Seattle Children’s Hospital 
and University of 
Washington 

Pedestrian employment ratio 
(DS2 only) 

I_RATIO_EMP_Y      Ratio Numeric 50 m 2008
-
2014 

 Seattle Children’s Hospital 
and University of 
Washington 

Pedestrian median household 
income (DS2 only) 

I_MED_HHI          - Categoric
al 

50 m 2008
-
2014 

 Seattle Children’s Hospital 
and University of 
Washington 

Pedestrian single household 
ratio (DS2 only) 

I_RATIO_SINGHH_Y  Ratio Numeric 50 m 2008
-
2014 

 Seattle Children’s Hospital 
and University of 
Washington 
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Variable names Abbreviation  Units Type Buffer 
size 

Date Removed Data Sources 

Micro-environment variables 

Average roadway width  AVG_RW_WIDTH_FT    Feet  Numeric 50 m 2018  SDOT1 

Median roadway class MED_RW_CLASS       - Categorical 50 m 2018 ✓ SDOT1  

Maximum posted speed 
limit 

MAX_SPEEDL_MPH    MPH Numeric 50 m 2018  SDOT1  

Maximum slope percentage MAX_SLOPE_PER      Ratio Numeric 50 m 2018  SDOT1  

Total bike lane length TOTAL_BIKEL_FT     Feet Numeric 50 m 2018  SDOT2 

Total sidewalk length TOTAL_SIDEW_FT     Feet Numeric 50 m 2012  UFL 

Total crosswalk count TOTAL_CROSSW_C     Count  Numeric 50 m 2017 ✓ SDOT3 

Presence of Ped & Bike 
sign 

TRAFF_SIGN_C       Count  Numeric 50 m 2018  SDOT4  

Presence of stop sign TRAFF_SIGN_C       Count  Numeric 50 m 2018  SDOT4  

Presence of one-way sign TRAFF_SIGN_C       Count  Numeric 50 m 2018  SDOT4  

Presence of crosswalk 
warning sign 

TRAFF_SIGN_C       Count  Numeric 50 m 2018  SDOT4  

Presence of curve warning 
sign 

TRAFF_SIGN_C       Count  Numeric 50 m 2018  SDOT4  

Presence of traffic circle, 
bump, no turn sign 

TRAFF_SIGN_C       Count  Numeric 50 m 2018  SDOT4  

Traffic signal presence TRAFF_SIGNAL_Y     Y/N Binary 50 m 2018  SDOT4  

Roadway segment count RW_SEGM_C          - Categorical 50 m 2018  SDOT1 
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Variable names Abbreviation  Units Type Buffer 
size 

Date Removed Data Sources 

Bus ridership density BUS_RIDERSHIP_ACRE # 
/acre 

Numeric 50 m 2012  UFL 

Macro-environment variables 

Residential density RES_UNIT_C_ACRE    # 
/acre 

Numeric 400 
m 

2012 ✓ UFL 

Job density JOBS_C_ACRE        # 
/acre 

Numeric 400 
m 

2012  UFL 

Residential census density RES_CENSUS_C_ACRE  # 
/acre 

Numeric 400 
m 

2010 ✓ 2010 Census Block data1  

Population census density POP_CENSUS_C_ACRE  # 
/acre 

Numeric 400 
m 

2010  2010 Census Block data1 

White population 
percentage 

WHITE_CENSUS_PER   Ratio Numeric 400 
m 

2010  2010 Census Block data1 

Median household income MED_MEDHHI_DOL     $ Numeric 400 
m 

2010  WA 2010 Census data 
Block Group level 

Public school presence PUB_SCHOOL_Y       Y/N Binary 400 
m 

2015
-
2016 

✓ National Center for 
Education Statistics1 

Public school enrollment 
count 

PUB_S_ENROLL_C     Count  Numeric 400 
m 

2015
-
2016 

 National Center for 
Education Statistics1  

Park presence (land use 
code: 76) 

PARK_Y             Y/N Binary 400 
m 

2010  WSDOT1 
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Variable names Abbreviation  Units Type Buffer 
size 

Date Removed Data Sources 

Total Trail length TOTAL_TRAIL_FT     Feet Numeric 400 
m 

2006  King County GIS Open 
Data 

Park and Ride presence PNR_Y             Y/N Binary 400 
m 

2017  WSDOT1 

Residential land use 
percentage (land use code: 
11-19) 

RES_LU_PER         Ratio Numeric 400 
m 

2010 ✓ WSDOT2 

Manufacturing land use 
percentage (land use code: 
21-39) 

MANUFAC_LU_PER     Ratio Numeric 400 
m 

2010  WSDOT2 

Transportation land use 
percentage (land use code: 
41-49) 

TRANSPORT_LU_PER   Ratio Numeric 400 
m 

2010  WSDOT2 

Trade land use percentage 
(land use code: 50-59) 

TRADE_LU_PER       Ratio Numeric 400 
m 

2010 ✓ WSDOT2 

Service land use percentage 
(land use code: 61-69) 

SERVICE_LU_PER     Ratio Numeric 400 
m 

2010  WSDOT2 

Notes: 
2010 Census Block data1 - www.ofm.wa.gov/washington-data-research/population-demographics/gis-data/census-geographic-files 
King County GIS Open Data1 - https://gis-kingcounty.opendata.arcgis.com/datasets/trails-in-king-county-trail-line 
National Center for Education Statistics1 - https://nces.ed.gov/ccd/elsi/tableGenerator.aspx 
SDOT1 - http://data-seattlecitygis.opendata.arcgis.com/datasets/seattle-streets  
SDOT2 - http://data-seattlecitygis.opendata.arcgis.com/datasets/existing-bike-facilities 
SDOT3 - http://data-seattlecitygis.opendata.arcgis.com/datasets/marked-crosswalks 

https://www.ofm.wa.gov/washington-data-research/population-demographics/gis-data/census-geographic-files
https://gis-kingcounty.opendata.arcgis.com/datasets/trails-in-king-county-trail-line
https://nces.ed.gov/ccd/elsi/tableGenerator.aspx
http://data-seattlecitygis.opendata.arcgis.com/datasets/seattle-streets
http://data-seattlecitygis.opendata.arcgis.com/datasets/existing-bike-facilities
http://data-seattlecitygis.opendata.arcgis.com/datasets/marked-crosswalks
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SDOT4 - https://data-seattlecitygis.opendata.arcgis.com/datasets/street-signs 
WSDOT1 - www.wsdot.wa.gov/mapsdata/geodatacatalog/Maps/noscale/DOT_PubTrans/ParkandRides.htm 
WSDOT2 - https://geo.wa.gov/datasets/washington-state-land-use-2010?selectedAttribute=LANDUSE_CD 

 
 

https://data-seattlecitygis.opendata.arcgis.com/datasets/street-signs
https://www.wsdot.wa.gov/mapsdata/geodatacatalog/Maps/noscale/DOT_PubTrans/ParkandRides.htm
https://geo.wa.gov/datasets/washington-state-land-use-2010?selectedAttribute=LANDUSE_CD
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Appendix C.  Visualization of significant predictors 
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Job density 
Data source: UFL job density 400 m Smart map (internal data) 
Processing: Extract the point values at intersections. The value represents the job density in the 
number of jobs per acre.  

 
Figure C1. Map of intersections with job density (unit: per acre) 
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Crosswalk count 
Data source: http://data-seattlecitygis.opendata.arcgis.com/datasets/marked-crosswalks 
Processing: Crosswalk points were filtered by intersection 50 m buffers. The count of 
crosswalks in the buffer was calculated for each intersection. Figure C 2 is an overview of 
crosswalks in Seattle and Figure C 3 shows the crosswalks around a typical intersection. 

 
Figure C 2. Intersections with marked crosswalks 

 
Figure C 3. Marked crosswalks around intersections within 50 m buffers 

 

http://data-seattlecitygis.opendata.arcgis.com/datasets/marked-crosswalks
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Figure C 4. Flow chart of data structure for crosswalk count 

Figure C 4 shows the data structure of this variable, which was aggregated at the level of 
intersections. Among the 14,932 intersections in Seattle, only 3,352 have crosswalks in their 50 
m buffers. From Figure C 5, most have less than 5 crosswalks, but there still exist outliers with 8 
or 9 around them, especially in downtown (the deep blue nodes in Figure C 6).  
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Figure C 5. Count of intersections by number of crosswalks in their 50 m buffers 

 

 
Figure C 6. Distribution of crosswalk counts in 50 m buffers in Seattle 
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Residential density 
Data source: UFL residential density 400 m Smart map (internal data) 
Processing: Extract the point values at intersections. The value represents the residential density 
in residents per acre. 
Note: Residential density within a 400-m buffer was converted to the more commonly used 
density unit, number per acre. For example, if there are 1,000 residents in 502,700 m2 (π * 400 m 
* 400 m), this means that there are 8 residents per acre (1,000 residents/502,700 m2 * 4,046.86 
m2/acre). 

 
Figure C 7. Map of intersections with residential density (unit: per acre) 
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Total bike lane length 
Data source: Seattle existing bike facilities (http://data-
seattlecitygis.opendata.arcgis.com/datasets/existing-bike-facilities) including both bicycle-related 
streets and off-streets (trails).  
Processing: Bike facilities were filtered by intersection 50 m buffers and summarized the length. 
Figure C 8 shows (left) the distribution of bike facilities and (right) gives the intersections based 
on the bike lane length.  

  

Figure C 8. Seattle existing bike facilities (left) and lengths of bike lanes by intersection (right) 
 
  

http://data-seattlecitygis.opendata.arcgis.com/datasets/existing-bike-facilities
http://data-seattlecitygis.opendata.arcgis.com/datasets/existing-bike-facilities
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Traffic sign presence 
Data source: Seattle traffic signs from http://data-
seattlecitygis.opendata.arcgis.com/datasets/street-signs (open source) 
Processing: Conducted comprehensive review on Regulatory and Warning signs from the City 
of Seattle DOT - 2018. The included signs are summarized in Table C 1. 
Light blue dots represent the intersections that did not have signs while dark blue dots show the 
intersection locations that did have signs. (Presence of signs are noted as 0: no, 1: yes). We used 
the presence of various signs, rather than number of signs at each intersection. 

Table C 1. Summary of signs 

Sign type Description text Frequency Locations 

Ped & Bike 
sign 

 

[STOP] HERE 
[SWOOPING 
LEFT ARROW] 
FOR [PED] 

213 

 

PUSH BUTTON 
FOR [PED WALK] 
SIGNAL [LT 
ARROW] 

210 

PUSH BUTTON 
FOR [PED WALK] 
SIGNAL 

194 

PUSH BUTTON 
FOR [PED WALK] 
SIGNAL [RT-LT 
ARROW] 

150 

PUSH BUTTON 
FOR GREEN 
LIGHT 

99 

[BIKE] [PED] 64 

[STOP SIGN] FOR 
[PED SYMBOL] 
[BIKE SYMBOL] 

55 

[BIKE] YIELD TO 
PEDS 

54 

http://data-seattlecitygis.opendata.arcgis.com/datasets/street-signs
http://data-seattlecitygis.opendata.arcgis.com/datasets/street-signs
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Sign type Description text Frequency Locations 

Stop sign 

STOP 8,735 

 

ALL WAY 1,305 
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Sign type Description text Frequency Locations 

One-way sign 

ONE WAY [RT 
ARROW? 

1,562 

 

ONE WAY [LT 
ARROW? 

1,472 

ONE WAY [RT 
ARROW] 

193 

ONE WAY [LT 
ARROW] 

192 

[LARGE RIGHT 
ARROW] ONE 
WAY 

59 
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Sign type Description text Frequency Locations 

Crosswalk 
warning sign 

[SCHOOL PED] 3,063 

 

[45L DW 
ARROW] 

2,013 

[PEDESTRIAN] 1,653 

AHEAD 719 

[45R DW 
ARROW] 

357 

[PEDESTRIAN IN 
X-WALK] 

323 

[PED] over [BIKE] 135 

CROSSWALK 104 

[PED] [BIKE] 86 

STOP FOR ME 
[PEDESTRIAN 
SYMBOL] IT'S 
THE LAW 

82 

TRAIL X-ING 60 

[BIKE] [PED] 50 
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Sign type Description text Frequency Locations 

Curve 
warning sign 

[RT LT ARROW] 316 

 

[LT ARROW] 214 

[RT ARROW] 213 

[LT CHEVRON] 179 

[45L CRV 
ARROW] 

155 

[45R CRV 
ARROW] 

146 

[90R CRV 
ARROW] 

106 

[90L CRV 
ARROW] 

95 



 

C-13 

Sign type Description text Frequency Locations 

Vehicle sign - 

No turn sign 

[NO LEFT TURN] 560 

 

[NO RIGHT 
TURN] 

321 

NO TURN ON 
RED 

168 

NO TURNS 31 

Vehicle sign - 

Traffic circle, 
bumps sign 

BUMP 434 

SPEED BUMPS 
AHEAD 

267 

[TRAFFIC 
CIRCLE 18 x 18 
DIAMOND 
GRADE 
ORANGE] 

43 

SPEED BUMP 
AHEAD 

26 

BUMPS 22 
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Appendix D.  Correlations for all environmental variables 
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Figure D 1. Correlations and distributions with all variables in analysis 
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Appendix E.  LASSO for variable selection 
 



 

E-2 

The following 25 predictors were identified by the research team during environmental variable 
processing. This processing included LASSO regression; a statistical inference tool that helps 
select significant predictors by iteratively attempting to minimize model MSE. 

1. Average roadway width 
2. Maximum posted speed limit (categorical variable: 5 levels- 20, 25, 30, 35, 40 mph) 
3. Maximum slope percentage 
4. Total bike lane length 
5. Sidewalk length 
6. Presence of ped and bike sign 
7. Presence of stop sign 
8. Presence of one-way sign 
9. Presence of crosswalk warning sign 
10. Presence of curve warning sign 
11. Presence of traffic circle, bump, and no turn sign 
12. Traffic signal presence 
13. Roadway segment count (categorical variable: 3 levels – 3, 4, 5+) 
14. Bus ridership density 
15. Job density 
16. Population census density 
17. White population percentage 
18. Median household income 
19. Public school enrollment count  
20. Park presence 
21. Total trail length 
22. Park and ride presence  
23. Manufacturing land use percentage 
24. Transportation land use percentage 
25. Service land use percentage 
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Appendix F.  Model results 
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Table F 1. Dataset 1, all intersections (n= 14,073) 

Predictors Median HH Income Job Density White Population Service Land Use 

 IRR CI p IRR CI p IRR CI p IRR CI p 

Negative Binomial Portion 

(Intercept) 3.86 3.42 – 4.35 <0.001 2.52 2.32 – 2.74 <0.001 2.78 2.46 – 3.15 <0.001 1.94 1.78 – 2.12 <0.001 

Avg roadway width (10ft) 1 1.00 – 1.01 0.061 1.01 1.00 – 1.01 0.001 1 1.00 – 1.01 0.037 1.01 1.00 – 1.01 <0.001 

Max speed limit – 20 mph Reference 

25 mph 1.75 1.62 – 1.88 <0.001 1.61 1.50 – 1.73 <0.001 1.77 1.64 – 1.91 <0.001 1.66 1.55 – 1.79 <0.001 

30 mph 0.66 0.61 – 0.71 <0.001 0.69 0.64 – 0.74 <0.001 0.69 0.64 – 0.74 <0.001 0.61 0.57 – 0.66 <0.001 

35 mph 0.79 0.69 – 0.90 <0.001 0.88 0.77 – 1.00 0.052 0.8 0.70 – 0.92 0.002 0.76 0.66 – 0.87 <0.001 

40 mph 0.86 0.70 – 1.05 0.132 0.95 0.79 – 1.16 0.642 0.88 0.72 – 1.08 0.216 0.9 0.74 – 1.10 0.318 

Max slope (%) 0.97 0.96 – 0.97 <0.001 0.96 0.96 – 0.97 <0.001 0.96 0.96 – 0.97 <0.001 0.97 0.96 – 0.98 <0.001 

Total bike lane (100 ft) 1.07 1.05 – 1.09 <0.001 1.07 1.05 – 1.08 <0.001 1.07 1.05 – 1.08 <0.001 1.06 1.05 – 1.08 <0.001 

Crosswalk warning sign (N) Reference 

Crosswalk warning sign (Y) 1.11 1.05 – 1.18 <0.001 1.11 1.05 – 1.18 <0.001 1.11 1.04 – 1.17 0.001 1.1 1.04 – 1.16 0.002 

Bike and Ped sign (N) ref 

Bike and Ped sign (Y) 1.26 1.12 – 1.41 <0.001 1.32 1.18 – 1.49 <0.001 1.26 1.11 – 1.41 <0.001 1.23 1.10 – 1.38 <0.001 

One-way sign (N) Reference 

One-way sign (Y) 1.11 1.02 – 1.20 0.018 0.89 0.82 – 0.96 0.004 1.16 1.06 – 1.26 0.001 1.06 0.98 – 1.15 0.174 
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Predictors Median HH Income Job Density White Population Service Land Use 

 IRR CI p IRR CI p IRR CI p IRR CI p 

Traffic signal presence (N) Reference 

Traffic signal presence (Y) 1.68 1.54 – 1.83 <0.001 1.47 1.35 – 1.60 <0.001 1.75 1.61 – 1.91 <0.001 1.54 1.41 – 1.68 <0.001 

Bus ridership (1000/acre) 1.47 1.35 – 1.61 <0.001 1.25 1.15 – 1.36 <0.001 1.56 1.42 – 1.72 <0.001 1.34 1.24 – 1.45 <0.001 

Population density (10/acre) 1.61 1.56 – 1.66 <0.001 1.63 1.59 – 1.68 <0.001 1.75 1.71 – 1.80 <0.001 1.67 1.63 – 1.72 <0.001 

Public school enrollment (1000 
counts) 

0.87 0.81 – 0.94 <0.001 0.92 0.86 – 0.99 0.027 0.84 0.78 – 0.91 <0.001 0.83 0.77 – 0.89 <0.001 

Park presence (N) Reference 

Park presence (Y) 1.42 1.35 – 1.50 <0.001 1.31 1.25 – 1.38 <0.001 1.4 1.33 – 1.48 <0.001 1.42 1.35 – 1.50 <0.001 

Total trail length (1000ft) 1.09 1.07 – 1.11 <0.001 1.1 1.07 – 1.12 <0.001 1.11 1.08 – 1.13 <0.001 1.09 1.07 – 1.12 <0.001 

Park and Ride presence (N) Reference 

Park and Ride presence (Y) 0.68 0.55 – 0.85 0.001 0.73 0.59 – 0.91 0.005 0.68 0.54 – 0.84 <0.001 0.68 0.54 – 0.85 0.001 

Manufacture land use (%) 0.98 0.97 – 0.99 0.003 0.98 0.97 – 0.99 0.005    0.98 0.97 – 0.99 0.001 

Transportation land use (%) 1 1.00 – 1.01 0.511    1 0.99 – 1.00 0.211 1 0.99 – 1.00 0.445 

Median household income 
($50,000) 

0.74 0.71 – 0.78 <0.001          

Job density (100/acre)   1.57 1.48 – 1.67 <0.001       

White population (%)      1 1.00 – 1.00 <0.001    

Service land use (%)         1.03 1.02 – 1.03 <0.001 
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Predictors Median HH Income Job Density White Population Service Land Use 

 IRR CI p IRR CI p IRR CI p IRR CI p 

Zero-Inflated Portion 

(Intercept) 13.54 9.22 – 19.90 <0.001 8.27 6.32 – 
10.80 

<0.001 3.33 2.19 – 5.06 <0.001 9.59 7.07 – 13.03 <0.001 

Avg roadway width (10ft) 0.97 0.95 – 0.99 0.001 0.98 0.96 – 0.99 0.004 0.96 0.94 – 0.98 <0.001 0.97 0.95 – 0.98 <0.001 

Max speed limit – 20 mph Reference 

25 mph 0 0.00 – Inf 0.974 0.04 0.01 – 0.16 <0.001 0 0.00 – Inf 0.974 0 0.00 – Inf 0.97 

30 mph 0.56 0.43 – 0.72 <0.001 0.71 0.58 – 0.88 0.002 0.55 0.42 – 0.72 <0.001 0.59 0.46 – 0.76 <0.001 

35 mph 0.22 0.11 – 0.44 <0.001 0.34 0.20 – 0.58 <0.001 0.31 0.15 – 0.64 0.001 0.31 0.16 – 0.60 <0.001 

40 mph 1.15 0.58 – 2.27 0.684 1.59 0.90 – 2.81 0.109 1.13 0.57 – 2.26 0.728 1.23 0.64 – 2.36 0.538 

Max slope (%) 1.02 1.00 – 1.03 0.062 0.98 0.97 – 1.00 0.024 1.01 0.99 – 1.03 0.378 1 0.98 – 1.02 0.88 

Total bike lane (100 ft) 0.69 0.62 – 0.77 <0.001 0.69 0.63 – 0.75 <0.001 0.62 0.53 – 0.73 <0.001 0.68 0.61 – 0.76 <0.001 

Crosswalk warning sign (N) Reference 

Crosswalk warning sign (Y) 0.73 0.58 – 0.93 0.009 0.71 0.57 – 0.87 0.001 0.71 0.56 – 0.91 0.007 0.75 0.60 – 0.94 0.013 

Bike and Ped sign (N) Reference 

Bike and Ped sign (Y) 2.1 0.96 – 4.58 0.062 1.76 0.95 – 3.27 0.073 2.38 1.04 – 5.48 0.041 1.92 0.88 – 4.19 0.1 

One-way sign (N) Reference 

One-way sign (Y) 0.3 0.14 – 0.63 0.001 0.34 0.18 – 0.63 0.001 0.35 0.18 – 0.68 0.002 0.29 0.14 – 0.59 0.001 
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Predictors Median HH Income Job Density White Population Service Land Use 

 IRR CI p IRR CI p IRR CI p IRR CI p 

Traffic signal presence (N) Reference 

Traffic signal presence (Y) 0.11 0.02 – 0.76 0.025 0.76 0.38 – 1.52 0.444 0.15 0.03 – 0.89 0.037 0.23 0.06 – 0.93 0.04 

Bus ridership (1000/acre) 0 0.00 – 0.04 0.004 0.02 0.00 – 2.13 0.098 0 0.00 – 0.07 0.009 0 0.00 – 0.12 0.011 

Population density (10/acre) 0.2 0.16 – 0.24 <0.001 0.28 0.24 – 0.33 <0.001 0.21 0.17 – 0.25 <0.001 0.2 0.16 – 0.24 <0.001 

Public school enrollment (1000 
counts) 

0.79 0.59 – 1.04 0.089 1 0.77 – 1.29 0.988 0.76 0.56 – 1.03 0.079 0.99 0.76 – 1.30 0.966 

Park presence (N) Reference 

Park presence (Y) 0.58 0.49 – 0.68 <0.001 0.63 0.54 – 0.74 <0.001 0.57 0.48 – 0.67 <0.001 0.58 0.49 – 0.68 <0.001 

Total trail length (1000ft) 0.64 0.58 – 0.71 <0.001 0.71 0.66 – 0.77 <0.001 0.66 0.59 – 0.73 <0.001 0.67 0.61 – 0.74 <0.001 

Park and Ride presence (N) Reference 

Park and Ride presence (Y) 2.66 1.57 – 4.53 <0.001 3.7 2.16 – 6.35 <0.001 3.12 1.79 – 5.41 <0.001 2.9 1.71 – 4.93 <0.001 

Manufacture land use (%) 0.97 0.93 – 1.01 0.102 1.11 1.07 – 1.15 <0.001    0.99 0.95 – 1.02 0.46 

Transportation land use (%) 0.97 0.95 – 0.99 0.003    0.96 0.94 – 0.99 0.002 0.96 0.94 – 0.98 <0.001 

Median household income 
($50,000) 

0.68 0.59 – 0.79 <0.001          

Job density (100/acre)    0 0.00 – 0.00 <0.001       

White population (%)       1.01 1.01 – 1.02 <0.001    

Service land use (%)          0.97 0.96 – 0.98 <0.001 

Observations 14073 14073 14073 14073         

AIC 71091.46 70690.47 71166.32 70746.18         
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Predictors Median HH Income Job Density White Population Service Land Use 

 IRR CI p IRR CI p IRR CI p IRR CI p 

Log-Likelihood -35502.73 -35304.24 -35542.16 -35330.09         

Note – IRR: Incident Rate Ratios; CI: Confidence Intervals; p=p-value 
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Table F 2. Dataset 2, intersections with 10+ walking bouts (n=3,047) 

Predictors NB – Median HH Income NB – Job Density NB – White Population NB – Service Land Use 

 IRR CI p IRR CI p IRR CI p IRR CI p 

(Intercept) 11.21 8.79 – 14.29 <0.001 13.18 10.04 – 17.31 <0.001 6.39 4.87 – 8.39 <0.001 5.63 4.37 – 7.27 <0.001 

Avg roadway width (10ft) 1.01 1.00 – 1.01 0.001 1.01 1.00 – 1.01 <0.001 1.01 1.00 – 1.01 0.003 1.01 1.00 – 1.01 <0.001 

Max speed limit – 20 mph Reference 

Max speed limit - 25 mph 1.36 1.28 – 1.45 <0.001 1.25 1.18 – 1.34 <0.001 1.40 1.31 – 1.49 <0.001 1.34 1.25 – 1.43 <0.001 

Max speed limit - 30 mph 0.95 0.88 – 1.02 0.169 1.00 0.93 – 1.08 0.956 0.94 0.87 – 1.01 0.094 0.88 0.82 – 0.95 0.002 

Max speed limit - 35 mph 1.09 0.94 – 1.26 0.250 1.15 1.00 – 1.32 0.043 1.20 1.03 – 1.39 0.014 1.03 0.89 – 1.19 0.720 

Max speed limit - 40 mph 1.11 0.91 – 1.36 0.333 1.24 1.02 – 1.51 0.030 1.06 0.87 – 1.31 0.550 1.12 0.92 – 1.38 0.270 

Max slope (%)    0.99 0.99 – 1.00 0.001       

Total bike lane (100 ft)    1.01 1.00 – 1.02 0.147 1.01 1.00 – 1.02 0.034    

Bike and Ped sign (N) Reference 

Bike and Ped sign (Y)    1.07 0.99 – 1.16 0.077       

Curve warning sign (N) Reference 

Curve warning sign (Y)    1.10 1.01 – 1.19 0.024    1.07 0.98 – 1.16 0.120 

Stop sign (N) Reference 

Stop sign (Y) 0.83 0.79 – 0.87 <0.001 0.87 0.83 – 0.92 <0.001 0.80 0.76 – 0.85 <0.001 0.84 0.80 – 0.89 <0.001 
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Predictors NB – Median HH Income NB – Job Density NB – White Population NB – Service Land Use 

 IRR CI p IRR CI p IRR CI p IRR CI p 

One-way sign (N) Reference 

One-way sign (Y) 0.95 0.90 – 1.01 0.079 0.78 0.73 – 0.82 <0.001    0.95 0.90 – 1.01 0.070 

Traffic circle, bump, no turn signs (N) Reference 

Traffic circle, bump, no turn signs (Y)    0.95 0.90 – 1.01 0.082       

Traffic signal presence (N) Reference 

Traffic signal presence (Y) 1.19 1.12 – 1.28 <0.001 1.11 1.04 – 1.19 0.001 1.22 1.14 – 1.30 <0.001 1.18 1.10 – 1.26 <0.001 

Bus ridership (1000/acre) 1.24 1.20 – 1.29 <0.001 1.15 1.12 – 1.19 <0.001 1.26 1.22 – 1.30 <0.001 1.23 1.19 – 1.28 <0.001 

Population density (10/acre) 1.20 1.18 – 1.23 <0.001 1.26 1.23 – 1.28 <0.001 1.25 1.22 – 1.27 <0.001 1.25 1.22 – 1.27 <0.001 

Public school enrollment (1000 counts) 0.86 0.81 – 0.92 <0.001 0.92 0.87 – 0.98 0.013 0.84 0.79 – 0.90 <0.001 0.84 0.79 – 0.90 <0.001 

Park presence (N) Reference 

Park presence (Y) 1.08 1.03 – 1.13 0.002       1.07 1.03 – 1.12 0.002 

Total trail length (1000ft) 0.94 0.93 – 0.96 <0.001 0.95 0.94 – 0.97 <0.001 0.94 0.93 – 0.96 <0.001 0.95 0.93 – 0.96 <0.001 

Park and Ride presence (N) Reference 

Park and Ride presence (Y) 0.56 0.45 – 0.72 <0.001 0.67 0.54 – 0.83 <0.001 0.51 0.41 – 0.64 <0.001 0.58 0.46 – 0.73 <0.001 

Manufacture land use (%) 0.98 0.97 – 1.00 0.036 0.99 0.98 – 1.00 0.140    0.99 0.97 – 1.00 0.109 

Transportation land use (%) 1.01 1.00 – 1.01 0.147          

Pedestrian average age 1.02 1.01 – 1.02 <0.001 1.01 1.00 – 1.01 0.001 1.02 1.01 – 1.02 <0.001 1.02 1.01 – 1.02 <0.001 

Pedestrian gender - female (%)    1.00 1.00 – 1.00 0.008 1.00 1.00 – 1.00 0.121 1.00 1.00 – 1.00 0.007 
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Predictors NB – Median HH Income NB – Job Density NB – White Population NB – Service Land Use 

 IRR CI p IRR CI p IRR CI p IRR CI p 

Pedestrian race - non-white (%) 0.99 0.99 – 0.99 <0.001 0.99 0.99 – 1.00 <0.001 0.99 0.99 – 1.00 <0.001 0.99 0.99 – 1.00 <0.001 

Pedestrian employment - yes (%)    1.00 1.00 – 1.00 0.025       

Pedestrian median income - 40K-69K Reference 

Pedestrian median income - < 40K 0.56 0.51 – 0.61 <0.001 0.63 0.58 – 0.68 <0.001 0.61 0.56 – 0.67 <0.001 0.56 0.51 – 0.61 <0.001 

Pedestrian median income - 70K-99K 0.77 0.74 – 0.81 <0.001 0.77 0.73 – 0.80 <0.001 0.79 0.75 – 0.83 <0.001 0.77 0.73 – 0.81 <0.001 

Pedestrian median income - >100K 0.89 0.82 – 0.96 0.002 0.93 0.87 – 1.00 0.034 0.88 0.81 – 0.95 0.001 0.91 0.84 – 0.98 0.010 

Pedestrian single household - yes (%) 1.00 1.00 – 1.00 <0.001    1.00 1.00 – 1.00 0.001 1.00 1.00 – 1.00 <0.001 

Median household income ($50,000) 0.80 0.76 – 0.84 <0.001          

Job density (100/acre)    1.37 1.33 – 1.41 <0.001       

White population (%)       1.00 1.00 – 1.00 <0.001    

Service land use (%)          1.01 1.01 – 1.01 <0.001 

Observations 3045 3045 3045 3045 

R2 Nagelkerke 0.783 0.835 0.772 0.794 

AIC 25203.180 24878.977 25263.006 25134.978 

log-Likelihood -12576.590 -12410.488 -12608.503 -12541.489 
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Appendix G.  Comparison of pedestrian and cyclist counting 
procedures 
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Table G 1. Comparison pedestrian and cyclist counting procedures 

Technology Strengths Weaknesses Typical Applications User Type Commercially Available Equipment Cost 

Inductance Loop ● Accurate when properly 
installed and configured 

● Uses traditional motor 
vehicle counting 
technology 

● Capable of counting bicyclists only 

● Requires saw cuts in the existing pavement 
or pre-formed loops in new pavement 
construction 

● May have a higher error with groups 

Permanent counts 

  

● Eco-Counter ZELT 

● RoadsysHI-TRAC CMU 

$$ 

Magnetometer May be possible to use 
existing motor vehicle 
sensors 

● Commercially-available, off-the-shelf 
products for counting bicyclists are limited 

● May have a higher error with groups 

Permanent counts 
 

● Econolite AccuSense Mag $-$$ 

Pressure 
sensor/pressure mats 

Some equipment may be 
able to distinguish bicyclists 
and pedestrians 

• Expensive/disruptive for installation under 
asphalt or concrete pavement 

Permanent counts 

Typically unpaved 
trails or paths 

 
● Eco-Counter SLAB 

● TRAFx Mountain Bike Counter 

$$ 

Seismic sensor Equipment is hidden from 
view 

• Commercially-available, off-the-shelf 
products for counting are limited 

Short-term counts on 
unpaved trails  

● Diamond Traffic Traffic Tally 6  

● Eco-Counter TUBE  

● Jamar TRAX Cycles Plus 

● MetroCount RidePod BT 

● TimeMark Delta NT, TimeMark 
Gamma NT 

$$ 

Radar sensor Capable of counting 
bicyclists in dedicated bike 
lanes or bikeways 

• Commercially-available, off-the-shelf 
products for counting are limited 

Short-term or 
permanent counts  

● Econolite AccuSense MicroRadar 

● Roadsys SDR 

● Sensys Networks MicroRadar 

$-$$ 
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Technology Strengths Weaknesses Typical Applications User Type Commercially Available Equipment Cost 

Video Imaging – 
Automated 

Potential accuracy in dense, 

high-traffic areas 

● Typically more expensive for exclusive 
installations 

● Algorithm development still maturing 

Short-term or 
permanent counts 

   

● Miovision Scout 

● Numina 

● Placemeter 

$-$$ 

Infrared – Active Relatively portable 

Low profile, unobtrusive 
appearance 

● Cannot distinguish between bicyclists and 
pedestrians unless combined with another 
bicycle detection technology 

● Very difficult to use for bike lanes and 
shared lanes May have a higher error with 
groups 

Short-term or 
permanent counts 

  
  

● Diamond Traffic Trail Counter TTC-
4420 

● TrailMaster TM1550 

$-$$ 

Infrared – Passive Very portable with easy 
setup 

Low profile, unobtrusive 
appearance 

● Cannot distinguish between bicyclists and 
pedestrians unless combined with another 
bicycle detector 

● Difficult to use for bike lanes and shared 
lanes requires careful site selection and 
configuration 

● May have a higher error when ambient air 
temperature approaches body temperature 
range 

● May have a higher error with groups 

● Direct sunlight on the sensor may create 
false counts 

Short-term or 
permanent counts 

  

 

  

● Eco-Counter PYRO 

● Roadsys HI-TRAC CMU 

● TRAFx Trail Counter 

$-$$ 
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Technology Strengths Weaknesses Typical Applications User Type Commercially Available Equipment Cost 

Pneumatic Tube Relatively portable,  
low-cost 

May be possible to use 
existing motor vehicle 
counting technology and 
equipment 

● Capable of counting bicyclists only 

● Tubes may pose a hazard to trail users 

● Greater risk of vandalism   

 

Short-term counts 
Bicyclists only  

● Diamond Traffic Traffic Tally 

● Eco-Counter TUBE  

● Jamar TRAX Cycles Plus 

● MetroCount RidePod BT 

● TimeMark Delta NT, TimeMark 
Gamma NT 

$-$$ 

Video Imaging – 
Manual Reduction 

Can be a lower cost when 
existing video cameras are 
already installed 

● Limited to short-term use 

● Manual video reduction is labor-intensive 

Short-term counts 

Bicyclists and 
pedestrians separately 

 
● CountingCars.com CountCloud 

● Miovision Scout 

● Various consumer video cameras 
with manual 

● reduction 

$-$$$ 

Manual Observer Very portable 

Can be used for automated 
equipment validation 

Expensive and possibly inaccurate for longer 
duration counts 

Short-term counts 

Bicyclists and 
pedestrians separately 

 
n/a $$-$$$ 

 

Bicyclists and pedestrians combined   

Bicyclists and pedestrians separately   

Bicyclists only   

Pedestrian only  
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